We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Periodic Solutions: The Natural Setup | SpringerLink

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Periodic Solutions: The Natural Setup

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:
Stability, Periodicity and Boundedness in Functional Dynamical Systems on Time Scales

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • 426 Accesses

Summary

Among time scales, periodic ones deserve a special interest since they enable researchers to develop a theory for the existence of periodic solutions of dynamic equations on time scales (see for example Bi et al. (Nonlinear Anal 68(5):1226–1245, 2008), Bohner and Warth (Appl Anal 86(8):1007–1015, 2007), Kaufmann and Raffoul (J Math Anal Appl 319(1):315–325, 2006; Electron J Differ Equ 2007(27):12, 2007)). This chapter is devoted to the study of periodic solutions based on the definition of periodicity given by Kaufmann and Raffoul (J Math Anal Appl 319(1):315–325, 2006) and Atıcı et al. (Dynamic Systems and Applications, vol. 3, pp. 43–48, 2001). In this section, we cover natural setup of periodicity. For the conventional definition of periodic time scale and periodic functions on periodic time scales we refer to Definitions 1.5.1 and 1.5.2, respectively. Based on the Definitions 1.5.1 and 1.5.2, periodicity and existence of periodic solutions of dynamic equations on time scales were studied by various researchers and for first papers on the subject we refer to Adıvar and Raffoul (Ann Mat Pura Appl 188(4):543–559, 2009; Comput Math Appl 58(2):264–272, 2009), Bi et al. (Nonlinear Anal 68(5):1226–1245, 2008), Kaufmann and Raffoul (J Math Anal Appl 319(1):315–325, 2006; Electron J Differ Equ 2007(27):12, 2007), and Liu and Li (Nonlinear Anal 67(5):1457–1463, 2007). We begin by introducing the concept of periodicity and then apply the concept to finite delay neutral nonlinear dynamical equations and to infinite delay Volterra integro-dynamic equations of variant forms by appealing to Schaefer fixed point theorem. The a priori bound will be obtained by the aid of Lyapunov-like functionals. Effort will be made to expose the improvement when we set the time scales to be the set of reals or integers. Then we proceed to study the existence of periodic solutions of almost linear Volterra integro-dynamic equations by utilizing Krasnosel’skiı̆ fixed point theorem (see Theorem 1.1.17). We will be examining the relationship between boundedness and the existence of periodic solutions. We will also be giving existence results for almost automorphic solutions of the delayed neutral dynamic system. We will end this chapter by proving existence results by using a fixed point theorem based on the large contraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Abbas, D. Bahuguna, Almost periodic solutions of neutral functional differential equations. Comput. Math. Appl. 55(11), 2593–2601 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Adıvar, A new periodicity concept for time scales. Math. Slovaca 63(4), 817–828 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Adıvar, Y.N. Raffoul, Existence results for periodic solutions of integro-dynamic equations on time scales. Ann. Mat. Pura Appl. 188(4), 543–559 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Adıvar, Y.N. Raffoul, Stability and periodicity in dynamic delay equations. Comput. Math. Appl. 58(2), 264–272 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Adıvar, Y.N. Raffoul, A note on “Stability and periodicity in dynamic delay equations” [Comput. Math. Appl. 58 (2009) 264–273] [mr2535793]. Comput. Math. Appl. 59(10), 3351–3354 (2010)

    Google Scholar 

  6. M. Adıvar, M.N. Islam, Y.N. Raffoul, Separate contraction and existence of periodic solutions in totally nonlinear delay differential equations. Hacet. J. Math. Stat. 41(1), 1–13 (2012)

    MathSciNet  MATH  Google Scholar 

  7. M. Adıvar, H.C. Koyuncuoğlu, Y.N. Raffoul, Existence of periodic solutions in shifts δ ± for neutral nonlinear dynamic systems. Appl. Math. Comput. 242, 328–339 (2014)

    MathSciNet  MATH  Google Scholar 

  8. M. Adıvar, H.C. Koyuncuoğlu, Y.N. Raffoul, Almost automorphic solutions of delayed neutral dynamic systems on hybrid domains. Appl. Anal. Discrete Math. 10(1), 128–151 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Akın-Bohner, Y.N. Raffoul, Boundedness in functional dynamic equations on time scales. Adv. Differ. Equ. 2006, 79689, 18 (2006)

    Google Scholar 

  10. E. Akın-Bohner, Y.N. Raffoul, C. Tisdell, Exponential stability in functional dynamic equations on time scales. Commun. Math. Anal. 9(1), 93–108 (2010)

    MathSciNet  MATH  Google Scholar 

  11. D.R. Anderson, R.J. Krueger, A.C. Peterson, Delay dynamic equations with stability. Adv. Differ. Equ. 2006, 94051, 1–19 (2006)

    MathSciNet  MATH  Google Scholar 

  12. D. Araya, R. Castro, C. Lizama, Almost automorphic solutions of difference equations. Adv. Differ. Equ. 2009, 591380, 15 (2009)

    Google Scholar 

  13. F.M. Atıcı, G.S. Guseinov, B. Kaymakçalan, Stability criteria for dynamic equations on time scales with periodic coefficients, in Dynamic Systems and Applications, vol. 3 (Atlanta, 1999), Dynamic, Atlanta (2001), pp. 43–48

    Google Scholar 

  14. A. Bellen, N. Guglielmi, A.E. Ruehli, Methods for linear systems of circuit delay differential equations of neutral type. IEEE Trans. Circuits Systems I Fund. Theory Appl. 46(1), 212–216 (1999). Darlington memorial issue

    Google Scholar 

  15. E. Beretta, F. Solimano, Y. Takeuchi, A mathematical model for drug administration by using the phagocytosis of red blood cells. J. Math. Biol. 35(1), 1–19 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. A.S. Besicovitch, Almost Periodic Functions (Dover Publications, Inc., New York, 1955)

    MATH  Google Scholar 

  17. L. Bi, M. Bohner, M. Fan, Periodic solutions of functional dynamic equations with infinite delay. Nonlinear Anal. 68(5), 1226–1245 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Bochner, Continuous mappings of almost automorphic and almost periodic functions. Proc. Nat. Acad. Sci. U.S.A. 52, 907–910 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Bohner, Some oscillation criteria for first order delay dynamic equations. Far East J. Appl. Math. 18(3), 289–304 (2005)

    MathSciNet  MATH  Google Scholar 

  20. M. Bohner, G.Sh. Guseinov, Double integral calculus of variations on time scales. Comput. Math. Appl. 54(1), 45–57 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications (Birkhäuser Boston, Inc., Boston, 2001)

    Book  MATH  Google Scholar 

  22. M. Bohner, A. Peterson (eds.), Advances in Dynamic Equations on Time Scales (Birkhäuser Boston, Inc., Boston, 2003)

    Google Scholar 

  23. M. Bohner, H. Warth, The Beverton-Holt dynamic equation. Appl. Anal. 86(8), 1007–1015 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Bohner, G.Sh. Guseinov, B. Karpuz, Properties of the Laplace transform on time scales with arbitrary graininess. Integral Transform. Spec. Funct. 22(11), 785–800 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. E. Braverman, S.H. Saker, Periodic solutions and global attractivity of a discrete delay host macroparasite model. J. Differ. Equ. Appl. 16(7), 789–806 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. T.A. Burton, An existence theorem for a neutral equation. Nonlinear Stud. 5(1), 1–6 (1998)

    MathSciNet  MATH  Google Scholar 

  27. T.A. Burton, Stability by Fixed Point Theory for Functional Differential Equations (Dover Publications, Inc., Mineola, 2006)

    MATH  Google Scholar 

  28. T.A. Burton, P.W. Eloe, M.N. Islam, Nonlinear integrodifferential equations and a priori bounds on periodic solutions. Ann. Mat. Pura Appl. 161, 271–283 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  29. S. Castillo, M. Pinto, Dichotomy and almost automorphic solution of difference system. Electron. J. Qual. Theory Differ. Equ. 2013(32), 17 (2013)

    Google Scholar 

  30. X. Chen, F. Lin, Almost periodic solutions of neutral functional differential equations. Nonlinear Anal. Real World Appl. 11(2), 1182–1189 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. T. Diagana, Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces (Springer, Cham, 2013)

    Book  MATH  Google Scholar 

  32. S. Elaydi, Periodicity and stability of linear Volterra difference systems. J. Math. Anal. Appl. 181(2), 483–492 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. S.I. Grossman, R.K. Miller, Perturbation theory for Volterra integrodifferential systems. J. Differ. Equ. 8, 457–474 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Hoffacker, C.C. Tisdell, Stability and instability for dynamic equations on time scales. Comput. Math. Appl. 49(9–10), 1327–1334 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. M.N. Islam, Y.N. Raffoul, Periodic solutions of neutral nonlinear system of differential equations with functional delay. J. Math. Anal. Appl. 331(2), 1175–1186 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Islam, E. Yankson, Boundedness and stability in nonlinear delay difference equations employing fixed point theory. Electron. J. Qual. Theory Differ. Equ. 2005(26), 18 (2005)

    Google Scholar 

  37. E.R. Kaufmann, Y.N. Raffoul, Periodic solutions for a neutral nonlinear dynamical equation on a time scale. J. Math. Anal. Appl. 319(1), 315–325 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. E.R. Kaufmann, Y.N. Raffoul, Periodicity and stability in neutral nonlinear dynamic equations with functional delay on a time scale. Electron. J. Differ. Equ. 2007(27), 12 (2007)

    Google Scholar 

  39. E.R. Kaufmann, N. Kosmatov, Y.N. Raffoul, The connection between boundedness and periodicity in nonlinear functional neutral dynamic equations on a time scale. Nonlinear Dyn. Syst. Theory 9(1), 89–98 (2009)

    MathSciNet  MATH  Google Scholar 

  40. Y. Kuang, Delay Differential Equations with Applications in Population Dynamics. Mathematics in Science and Engineering, vol. 191 (Academic, Boston, 1993)

    Google Scholar 

  41. Y. Kuang, Global stability in one or two species neutral delay population models. Canad. Appl. Math. Quart. 1(1), 23–45 (1993)

    MathSciNet  MATH  Google Scholar 

  42. X.-L. Liu, W.-T. Li, Periodic solutions for dynamic equations on time scales. Nonlinear Anal. 67(5), 1457–1463 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. G. Liu, J. Yan, Positive periodic solutions of neutral predator-prey model with Beddington-DeAngelis functional response. Comput. Math. Appl. 61(8), 2317–2322 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. C. Lizama, J.G. Mesquita, Almost automorphic solutions of dynamic equations on time scales. J. Funct. Anal. 265(10), 2267–2311 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. C. Lizama, J.G. Mesquita, Almost automorphic solutions of non-autonomous difference equations. J. Math. Anal. Appl. 407(2), 339–349 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. S. Lu, W. Ge, Existence of positive periodic solutions for neutral logarithmic population model with multiple delays. J. Comput. Appl. Math. 166(2), 371–383 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. M.R. Maroun, Y.N. Raffoul, Periodic solutions in nonlinear neutral difference equations with functional delay. J. Korean Math. Soc. 42(2), 255–268 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  48. J.L. Massera, The existence of periodic solutions of systems of differential equations. Duke Math. J. 17, 457–475 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  49. I. Mishra, D. Bahuguna, S. Abbas, Existence of almost automorphic solutions of neutral functional differential equation. Nonlinear Dyn. Syst. Theory 11(2), 165–172 (2011)

    MathSciNet  MATH  Google Scholar 

  50. M. Ohta, S. Hiromitsu, A trial of a new formation of the random noise model by use of arbitrary uniformly almost periodic functions. Inf. Control. 33(3), 227–252 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  51. M. Ohta, T. Koizumi, Digital simulation of a white noise model formed of uniformly almost periodic functions. Inf. Control. 17, 340–358 (1970)

    Article  MATH  Google Scholar 

  52. A.C. Peterson, C.C. Tisdell, Boundedness and uniqueness of solutions to dynamic equations on time scales. J. Differ. Equ. Appl. 10(13–15), 1295–1306 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  53. Y.N. Raffoul, Periodic solutions for neutral nonlinear differential equations with functional delay. Electron. J. Differ. Equ. 2003(102), 7 (2003)

    Google Scholar 

  54. Y.N. Raffoul, Stability in neutral nonlinear differential equations with functional delays using fixed-point theory. Math. Comput. Model. 40(7–8), 691–700 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  55. Y.N. Raffoul, Existence of periodic solutions in neutral nonlinear difference systems with delay. J. Differ. Equ. Appl. 11(13), 1109–1118 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  56. Y.N. Raffoul, Stability and periodicity in discrete delay equations. J. Math. Anal. Appl. 324(2), 1356–1362 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  57. Y.N. Raffoul, Periodicity in nonlinear systems with infinite delay. Adv. Dyn. Syst. Appl. 3(1), 185–194 (2008)

    MathSciNet  Google Scholar 

  58. Y. N. Raffoul, Inequalities that lead to exponential stability and instability in delay difference equations. JIPAM J. Inequal. Pure Appl. Math. 10(3), 70, 9 (2009)

    Google Scholar 

  59. Y.N. Raffoul, Existence of positive periodic solutions in neutral nonlinear equations with functional delay. Rocky Mountain J. Math. 42(6), 1983–1993 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  60. Y.N. Raffoul, Periodic solutions of almost linear Volterra integro-dynamic equation on periodic time scales. Canad. Math. Bull. 58(1), 174–181 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  61. Y. Raffoul, M. Ünal, Stability in nonlinear delay Volterra integro-differential systems. J. Nonlinear Sci. Appl. 7(6), 422–428 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  62. Y.N. Raffoul, E. Yankson, Positive periodic solutions in neutral delay difference equations. Adv. Dyn. Syst. Appl. 5(1), 123–130 (2010)

    MathSciNet  Google Scholar 

  63. H. Schaefer, Über die Methode der a priori-Schranken. Math. Ann. 129, 415–416 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  64. Y.G. Sficas, I.P. Stavroulakis, Necessary and sufficient conditions for oscillations of neutral differential equations. J. Math. Anal. Appl. 123(2), 494–507 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  65. A. Slavík, Product integration on time scales. Dynam. Syst. Appl. 19(1), 97–112 (2010)

    MathSciNet  MATH  Google Scholar 

  66. G. Trautmann, Darstellung von Vektorraumbündeln über C n −{0}. Arch. Math. 24, 303–313 (1973)

    Google Scholar 

  67. W.A. Veech, Almost automorphic functions on groups. Amer. J. Math. 87, 719–751 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  68. M. Vesely, Constructions of Almost Periodic Sequences and Functions and Homogeneous Linear Difference and Differential Systems. Thesis (Ph.D.), Masaryk University, 2011

    Google Scholar 

  69. B. Zhang, Asymptotic stability criteria and integrability properties of the resolvent of Volterra and functional equations. Funkcial. Ekvac. 40(3), 335–351 (1997)

    MathSciNet  MATH  Google Scholar 

  70. J. Zhang, M. Fan, H. Zhu, Existence and roughness of exponential dichotomies of linear dynamic equations on time scales. Comput. Math. Appl. 59(8), 2658–2675 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adıvar, M., Raffoul, Y.N. (2020). Periodic Solutions: The Natural Setup. In: Stability, Periodicity and Boundedness in Functional Dynamical Systems on Time Scales. Springer, Cham. https://doi.org/10.1007/978-3-030-42117-5_7

Download citation

Publish with us

Policies and ethics