Advertisement

Optimal Collision Side-Channel Attacks

  • Cezary Glowacz
  • Vincent GrossoEmail author
Conference paper
  • 21 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11833)

Abstract

Collision side-channel attacks are effective attacks against cryptographic implementations, however, optimality and efficiency of collision side-channel attacks is an open question. In this paper, we show that collision side-channel attacks can be derived using maximum likelihood principle when the distribution of the values of the leakage function is known. This allows us to exhibit the optimal collision side-channel attack and its efficient computation. Finally, we can compute an upper bound for the success rate of the optimal post-processing strategy, and we show that our method and the optimal strategy have success rates close to each other. Attackers can benefit from our method as we present an efficient collision side-channel attack. Evaluators can benefit from our method as we present a tight upper bound for the success rate of the optimal strategy.

Notes

Acknowledgments

The authors thank Wolfgang Thumser, Telekom Security for fruitful discussions on the notion of optimality of collision side-channel attacks.

References

  1. 1.
    Bogdanov, A.: Improved side-channel collision attacks on AES. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 84–95. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-77360-3_6CrossRefGoogle Scholar
  2. 2.
    Bogdanov, A.: Multiple-differential side-channel collision attacks on AES. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 30–44. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85053-3_3CrossRefGoogle Scholar
  3. 3.
    Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28632-5_2CrossRefGoogle Scholar
  4. 4.
    Bruneau, N., Carlet, C., Guilley, S., Heuser, A., Prouff, E., Rioul, O.: Stochastic collision attack. IEEE Trans. Inform. Forensics Secur. 12(9), 2090–2104 (2017).  https://doi.org/10.1109/TIFS.2017.2697401CrossRefGoogle Scholar
  5. 5.
    Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36400-5_3CrossRefGoogle Scholar
  6. 6.
    Durvaux, F., Standaert, F.-X., Veyrat-Charvillon, N.: How to certify the leakage of a chip? In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 459–476. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_26CrossRefGoogle Scholar
  7. 7.
    Gérard, B., Standaert, F.: Unified and optimized linear collision attacks and their application in a non-profiled setting: extended version. J. Cryptogr. Eng. 3(1), 45–58 (2013).  https://doi.org/10.1007/s13389-013-0051-9CrossRefGoogle Scholar
  8. 8.
    Joye, M., Quisquater, J.-J. (eds.): CHES 2004. LNCS, vol. 3156. Springer, Heidelberg (2004).  https://doi.org/10.1007/b99451CrossRefzbMATHGoogle Scholar
  9. 9.
    Martin, D.P., O’Connell, J.F., Oswald, E., Stam, M.: Counting keys in parallel after a side channel attack. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part II. LNCS, vol. 9453, pp. 313–337. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48800-3_13CrossRefzbMATHGoogle Scholar
  10. 10.
    Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analysis collision attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 125–139. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15031-9_9CrossRefGoogle Scholar
  11. 11.
    Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 30–46. Springer, Heidelberg (2005).  https://doi.org/10.1007/11545262_3CrossRefGoogle Scholar
  12. 12.
    Schramm, K., Leander, G., Felke, P., Paar, C.: A collision-attack on AES. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 163–175. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28632-5_12CrossRefzbMATHGoogle Scholar
  13. 13.
    Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-01001-9_26CrossRefGoogle Scholar
  14. 14.
    Wiemers, A., Klein, D.: Entropy reduction for the correlation-enhanced power analysis collision attack. In: Inomata, A., Yasuda, K. (eds.) IWSEC 2018. LNCS, vol. 11049, pp. 51–67. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-97916-8_4CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Telekom SecurityBonnGermany
  2. 2.CNRS/Laboratoire Hubert CurienUniversité de LyonLyonFrance

Personalised recommendations