Advertisement

Approach the Interval Type-2 Fuzzy System and PSO Technique in Landcover Classification

  • Dinh Sinh MaiEmail author
  • Long Thanh Ngo
  • Le Hung Trinh
Conference paper
  • 271 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12034)

Abstract

In fuzzy classification systems, the estimation of the optimal number of clusters and building base-rules are very important and greatly affects the accuracy of the fuzzy system. Base-rules are often built on the experience of experts, but this is not always good and the results are often unstable. Particle swarm optimization (PSO) techniques have many advantages in finding optimal solutions and have been used successfully in many practical problems. This paper proposes a method using the PSO technique to build base-rules for the interval type-2 fuzzy system (IT2FS). Experiments performed on satellite image data for the landcover classification problem have shown that the proposed method works more stably and effectively than the non-PSO technique.

Keywords

Type-2 fuzzy set Interval type-2 fuzzy system PSO Fuzzy system Landcover Satellite image 

Notes

Acknowledgment

This research is funded by the Newton Fund, under the NAFOSTED - UK Academies collaboration programme. This work was supported by the Domestic Master/PhD Scholarship Programme of Vingroup Innovation Foundation (VINIF).

References

  1. 1.
    Karnik, N., Mendel, J., Liang, Q.: Type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 7(6), 643–658 (1999)CrossRefGoogle Scholar
  2. 2.
    Mendel, J., John, R.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2), 117–127 (2002)CrossRefGoogle Scholar
  3. 3.
    Hwang, C., Rhee, F.C.H.: Uncertain fuzzy clustering: interval type-2 fuzzy approach to C-means. IEEE Trans. Fuzzy Syst. 15(1), 107–120 (2007)CrossRefGoogle Scholar
  4. 4.
    Ngo, L.T., Mai, D.S., Nguyen, M.U.: GPU-based acceleration of interval type-2 fuzzy C-means clustering for satellite imagery land-cover classification. In: 12th IEEE International Conference on Intelligent Systems Design and Applications (ISDA), pp. 992–997 (2012)Google Scholar
  5. 5.
    Mai, S.D., Ngo, L.T.: Interval type-2 fuzzy C-means clustering with spatial information for land-cover classification. In: Nguyen, N.T., Trawiński, B., Kosala, R. (eds.) ACIIDS 2015. LNCS (LNAI), vol. 9011, pp. 387–397. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-15702-3_38CrossRefGoogle Scholar
  6. 6.
    Ngo, L.T., Mai, D.S., Pedrycz, W.: Semi-supervising interval type-2 fuzzy C-means clustering with spatial information for multi-spectral satellite image classification and change detection. Comput. Geosci. 83, 1–15 (2015)CrossRefGoogle Scholar
  7. 7.
    Mendel, J.M.: Type-2 fuzzy sets and systems: an overview. IEEE Comput. Intell. Mag. 2(1), 20–29 (2007)CrossRefGoogle Scholar
  8. 8.
    Mendel, J.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions, 2nd edn. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-51370-6CrossRefzbMATHGoogle Scholar
  9. 9.
    Abbas, K., Saeid, N., Doug, C., Dipti, S.: Interval type-2 fuzzy logic systems for load forecasting: a comparative study. IEEE Trans. Power Syst. 27(3), 1274–1282 (2012)CrossRefGoogle Scholar
  10. 10.
    Das, K., Suresh, S., Sundararajan, N.: A fully tuned sequential interval type-2 fuzzy inference system for motor-imagery task classification. In: IEEE International Conference on Fuzzy Systems, pp. 751–758 (2016)Google Scholar
  11. 11.
    Nguyen, T., Saeid, N.: Modified AHP for gene selection and cancer classification using type-2 fuzzy logic. IEEE Trans. Fuzzy Syst. 24(2), 273–287 (2016)CrossRefGoogle Scholar
  12. 12.
    Mendel, J., Liu, X.: Simplified interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 21(6), 1056–1069 (2013)CrossRefGoogle Scholar
  13. 13.
    Liang, Q., Mendel, J.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8(5), 535–550 (2000)CrossRefGoogle Scholar
  14. 14.
    Mendel, J.M., John, R.I., Liu, F.: Interval type-2 fuzzy logic systems made simple. EEE Trans. Fuzzy Syst. 14(6), 808–821 (2006)CrossRefGoogle Scholar
  15. 15.
    Karnik, N.N., Mendel, J.M.: Centroid of a type-2 fuzzy set. Inf. Sci. 132(1–4), 195–220 (2001)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Karnik, N.N., Mendel, J.M.: Operations on type-2 fuzzy sets. Fuzzy Sets Syst. 122(2), 327–348 (2001)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Wu, D., Mendel, J.M.: Enhanced Karnik-Mendel algorithms. IEEE Trans. Fuzzy Syst. 17(4), 923–934 (2009)CrossRefGoogle Scholar
  18. 18.
    Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy C-means clustering algorithm. Comput. Geosci. 10(2), 191–203 (1984)CrossRefGoogle Scholar
  19. 19.
    Olivas, F., Angulo, L.A., Perez, J., Caraveo, C., Valdez, F., Castillo, O.: Comparative study of type-2 fuzzy particle swarm, Bee Colony and Bat algorithms in optimization of fuzzy controllers. Algorithms 10, 1–27 (2017)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Mai, S.D., Ngo, L.T., Le Trinh, H.: Satellite image classification based spatial-spectral fuzzy clustering algorithm. In: Nguyen, N.T., Hoang, D.H., Hong, T.-P., Pham, H., Trawiński, B. (eds.) ACIIDS 2018. LNCS (LNAI), vol. 10752, pp. 505–518. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75420-8_48CrossRefGoogle Scholar
  21. 21.
    Mai, D.S., Ngo, L.T.: General semi-supervised possibilistic fuzzy c-means clustering for land-cover classification. In: International Conference on Knowledge and Systems Engineering, pp. 1–6 (2019)Google Scholar
  22. 22.
    Dang, T.H., Mai, D.S., Ngo, L.T.: Multiple kernel collaborative fuzzy clustering algorithm with weighted super-pixels for satellite image land-cover classification. Eng. Appl. Artif. Intell. 85, 85–98 (2019)CrossRefGoogle Scholar
  23. 23.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Le Quy Don Technical UniversityHanoiVietnam

Personalised recommendations