Contextual Anomaly Detection in Time Series Using Dynamic Bayesian Network

  • Achyut Mani TripathiEmail author
  • Rashmi Dutta BaruahEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12034)


In this paper, we propose a novel method to identify contextual anomaly in time series using Dynamic Bayesian Networks (DBN). DBN is a powerful machine learning approach that captures temporal characteristics of time series data. In order to detect contextual anomaly we integrate contextual information to the DBN framework, referred to as Contextual DBN (CxDBN). The efficacy of CxDBN is shown using a case study of the identification of contextual anomaly in real-time oil well drilling data.


Anomaly detection Contextual anomaly Dynamic Bayesian Networks Oil well drilling 


  1. 1.
    Abid, N., Kozlow, P., Yanushkevich, S.: Detection of asymmetric abnormalities in gait using depth data and dynamic Bayesian networks. In: 2018 14th IEEE International Conference on Signal Processing (ICSP), pp. 762–767. IEEE (2018)Google Scholar
  2. 2.
    Avilés-Arriaga, H.H., Sucar, L.E., Mendoza, C.E., Vargas, B.: Visual recognition of gestures using dynamic naive Bayesian classifiers. In: Proceedings of the 12th IEEE International Workshop on Robot and Human Interactive Communication, ROMAN 2003, pp. 133–138. IEEE (2003)Google Scholar
  3. 3.
    Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: ACM Sigmod Record, vol. 29, pp. 93–104. ACM (2000)Google Scholar
  4. 4.
    Chamkalani, A., Pordel Shahri, M., Poordad, S., et al.: Support vector machine model: a new methodology for stuck pipe prediction. In: SPE Unconventional Gas Conference and Exhibition. Society of Petroleum Engineers (2013)Google Scholar
  5. 5.
    Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)CrossRefGoogle Scholar
  6. 6.
    De Paola, A., Ferraro, P., Gaglio, S., Re, G.L., Das, S.K.: An adaptive Bayesian system for context-aware data fusion in smart environments. IEEE Trans. Mob. Comput. 16(6), 1502–1515 (2016)CrossRefGoogle Scholar
  7. 7.
    Ding, N., Gao, H., Bu, H., Ma, H.: RADM: real-time anomaly detection in multivariate time series based on Bayesian network. In: 2018 IEEE International Conference on Smart Internet of Things (SmartIoT), pp. 129–134. IEEE (2018)Google Scholar
  8. 8.
    Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Mach. Learn. 29(2–3), 131–163 (1997)CrossRefGoogle Scholar
  9. 9.
    Ghahramani, Z.: Learning dynamic Bayesian networks. In: Giles, C.L., Gori, M. (eds.) NN 1997. LNCS, vol. 1387, pp. 168–197. Springer, Heidelberg (1997). Scholar
  10. 10.
    Hu, J., Wang, F., Sun, J., Sorrentino, R., Ebadollahi, S.: A healthcare utilization analysis framework for hot spotting and contextual anomaly detection. In: AMIA Annual Symposium Proceedings, vol. 2012, p. 360. American Medical Informatics Association (2012)Google Scholar
  11. 11.
    Liu, Q., et al.: Unsupervised detection of contextual anomaly in remotely sensed data. Remote Sens. Environ. 202, 75–87 (2017)CrossRefGoogle Scholar
  12. 12.
    MacDonald, I.L., Zucchini, W.: Hidden Markov and Other Models for Discrete-valued Time Series, vol. 110. CRC Press, Boca Raton (1997)zbMATHGoogle Scholar
  13. 13.
    Malhotra, P., TV, V., Vig, L., Agarwal, P., Shroff, G.: TimeNet: pre-trained deep recurrent neural network for time series classification. arXiv preprint arXiv:1706.08838 (2017)
  14. 14.
    Malhotra, P., Vig, L., Shroff, G., Agarwal, P.: Long short term memory networks for anomaly detection in time series. In: Proceedings, p. 89. Presses Universitaires de Louvain (2015)Google Scholar
  15. 15.
    McAlinn, K., West, M.: Dynamic bayesian predictive synthesis in time series forecasting. J. Econ. 210(1), 155–169 (2019)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Nanduri, A., Sherry, L.: Anomaly detection in aircraft data using recurrent neural networks (RNN). In: 2016 Integrated Communications Navigation and Surveillance (ICNS), pp. 5C2-1. IEEE (2016)Google Scholar
  17. 17.
    Ogbechie, A., Díaz-Rozo, J., Larrañaga, P., Bielza, C.: Dynamic Bayesian network-based anomaly detection for in-process visual inspection of laser surface heat treatment. In: Beyerer, J., Niggemann, O., Kühnert, C. (eds.) Machine Learning for Cyber Physical Systems. Technologien für die intelligente Automation (Technologies for Intelligent Automation), pp. 17–24. Springer, Heidelberg (2017)CrossRefGoogle Scholar
  18. 18.
    Pauwels, S., Calders, T.: Extending dynamic Bayesian networks for anomaly detection in complex logs. arXiv preprint arXiv:1805.07107 (2018)
  19. 19.
    Peia, O., Roszbach, K.: Finance and growth: time series evidence on causality. J. Financ. Stab. 19, 105–118 (2015)CrossRefGoogle Scholar
  20. 20.
    Pokrajac, D., Lazarevic, A., Latecki, L.J.: Incremental local outlier detection for data streams. In: 2007 IEEE Symposium on Computational Intelligence and Data Mining, pp. 504–515. IEEE (2007)Google Scholar
  21. 21.
    Pradhan, M., Pradhan, S.K., Sahu, S.K.: Anomaly detection using artificial neural network. Int. J. Eng. Sci. Emerg. Technol. 2(1), 29–36 (2012)Google Scholar
  22. 22.
    Qiao, H., Wang, T., Wang, P., Qiao, S., Zhang, L.: A time-distributed spatiotemporal feature learning method for machine health monitoring with multi-sensor time series. Sensors 18(9), 2932 (2018)CrossRefGoogle Scholar
  23. 23.
    Xia, H., Li, T., Liu, W., Zhong, X., Yuan, J.: Abnormal event detection method in surveillance video based on temporal CNN and sparse optical flow. In: Proceedings of the 2019 5th International Conference on Computing and Data Engineering, pp. 90–94. ACM (2019)Google Scholar
  24. 24.
    Zhang, H., Zhang, Q., Liu, J., Guo, H.: Fault detection and repairing for intelligent connected vehicles based on dynamic bayesian network model. IEEE Internet Things J. 5(4), 2431–2440 (2018)CrossRefGoogle Scholar
  25. 25.
    Zhou, P.Y., Chan, K.C.: Fuzzy feature extraction for multichannel EEG classification. IEEE Trans. Cogn. Dev. Syst. 10(2), 267–279 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations