Advertisement

Abstract

Key management is a basic requirement for any security solution. Lightweight key predistribution schemes (KPS) that establish symmetric secrets are best suited for resource constraint devices of low cost Internet of Things (IoT), sensors of Wireless Sensor Networks (WSN). Although there exist numerous elegant KPS, an appropriate hierarchical proposal is absent. To design such a scheme, we propose a combinatorial tool hierarchical set system/design. As an application of such a tool, we propose a deterministic lightweight hierarchical KPS (HKPS) that achieves the desirable design criteria:
  • decentralized hierarchy of a fixed number of depths (l);

  • resilient against compromise of (i) any number of lower level nodes; and (ii) a threshold number of nodes of same level in the hierarchy;

  • non-interactive which saves bandwidth and energy;

  • deterministic KPS which implies the nodes in the network have predictable behaviour of key rings;

  • efficient as it uses hash chains rather than any public key based key exchange or bilinear maps;

  • free to choose any basic KPS at any level/depth of hierarchy as per the requirement of that level;

  • simplicity in design.

To enhance the resilience of the HKPS, we exploited the hash chain idea. Further, we instantiate the HKPS with a very efficient KPS Sensornet. The studies presented here are theoretical and does not contain any experimental and comparative results.

Keywords

Low cost IoT Wireless Sensor Network Security Key predistribution scheme Hash function Combinatorial set design 

References

  1. 1.
    Bechkit, W., Bouabdallah, A., Challal, Y.: Enhancing resilience of probabilistic key pre-distribution schemes for WSNs through hash chaining. In: Proceedings of the 17th ACM Conference on Computer and Communications Security, CCS 2010, 4–8 October 2010, Chicago, Illinois, USA, pp. 642–644 (2010)Google Scholar
  2. 2.
    Bechkit, W., Challal, Y., Bouabdallah, A.: A new class of hash-chain based key pre-distribution schemes for WSN. Comput. Commun. 36(3), 243–255 (2013)CrossRefGoogle Scholar
  3. 3.
    Çamtepe, S.A., Yener, B.: Combinatorial design of key distribution mechanisms for wireless sensor networks. In: Samarati, P., Ryan, P., Gollmann, D., Molva, R. (eds.) ESORICS 2004. LNCS, vol. 3193, pp. 293–308. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30108-0_18CrossRefGoogle Scholar
  4. 4.
    Chakrabarti, D., Maitra, S., Roy, B.: A key pre-distribution scheme for wireless sensor networks: merging blocks in combinatorial design. In: Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 89–103. Springer, Heidelberg (2005).  https://doi.org/10.1007/11556992_7CrossRefGoogle Scholar
  5. 5.
    Chakrabarti, D., Seberry, J.: Combinatorial structures for design of wireless sensor networks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 365–374. Springer, Heidelberg (2006).  https://doi.org/10.1007/11767480_25CrossRefGoogle Scholar
  6. 6.
    Chan, H., Perrig, A., Song, D.: Random key predistribution schemes for sensor networks. In: IEEE Symposium On Security and Privacy, pp. 197–213. IEEE Computer Society (2003)Google Scholar
  7. 7.
    Chen, C.Y., Chao, H.C.: A survey of key predistribution in wireless sensor networks. Secur. Commun. Netw. 7(12), 2495–2508 (2014)Google Scholar
  8. 8.
    Dalai, D.K., Sarkar, P.: Key predistribution schemes using bent functions in distributed sensor networks. In: Chen, K., Lin, D., Yung, M. (eds.) Inscrypt 2016. LNCS, vol. 10143, pp. 367–385. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-319-54705-3_23CrossRefGoogle Scholar
  9. 9.
    Dalai, D.K., Sarkar, P.: Enhancing resilience of KPS using bidirectional hash chains and application on sensornet. In: Yan, Z., Molva, R., Mazurczyk, W., Kantola, R. (eds.) NSS 2017. LNCS, vol. 10394, pp. 683–693. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-64701-2_54CrossRefGoogle Scholar
  10. 10.
    Dalai, D.K., Sarkar, P.: Sensornet - a key predistribution scheme for distributed sensors using nets. In: Proceedings of the 6th International Conference on Sensor Networks - SENSORNETS, pp. 49–58. INSTICC, ScitePress (2017)Google Scholar
  11. 11.
    Erdős, P., Rényi, A.: On the evolution of random graphs. In: Publication of the Mathematical Institute of the Hungarian Academy of Sciences, pp. 17–61 (1960)Google Scholar
  12. 12.
    Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor networks. In: ACM Conference on Computer and Communications Security, pp. 41–47 (2002)Google Scholar
  13. 13.
    Gennaro, R., Halevi, S., Krawczyk, H., Rabin, T., Reidt, S., Wolthusen, S.D.: Strongly-resilient and non-interactive hierarchical key-agreement in MANETs. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 49–65. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-88313-5_4CrossRefGoogle Scholar
  14. 14.
    Kendall, M., Martin, K.M.: Graph-theoretic design and analysis of key predistribution schemes. Des. Codes Cryptogr. 81(1), 11–34 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lee, J., Stinson, D.R.: A combinatorial approach to key predistribution for distributed sensor networks. In: IEEE Wireless Communications and Networking Conference WCNC 2005, New Orleans, USA, pp. 1200–1205 (2005)Google Scholar
  16. 16.
    Paterson, M.B., Stinson, D.R.: A unified approach to combinatorial key predistribution schemes for sensor networks. Des. Codes Cryptogr. 71(3), 433–457 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ramkumar, M., Memon, N., Simha, R.: A hierarchical key pre-distribution scheme. In: Electro/Information Technology Conference, EIT 2005. IEEE (2005)Google Scholar
  18. 18.
    Ruj, S., Roy, B.K.: Key predistribution using combinatorial designs for grid-group deployment scheme in wireless sensor networks. TOSN 6(1), 4:1–4:28 (2009)CrossRefGoogle Scholar
  19. 19.
    Ruj, S., Roy, B.K.: Key pre-distribution using partially balanced designs in wireless sensor networks. IJHPCN 7(1), 19–28 (2011)CrossRefGoogle Scholar
  20. 20.
    Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairings. In: Proceedings of SCIS 2000 (2000)Google Scholar
  21. 21.
    Sarkar, P.: Lightweight deterministic non interactive (ni) hierarchical key agreement scheme (KAS). In: Yan, Z., Molva, R., Mazurczyk, W., Kantola, R. (eds.) NSS 2017. LNCS, vol. 10394, pp. 315–331. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-64701-2_23CrossRefGoogle Scholar
  22. 22.
    Steiner, J.G., Neuman, B.C., Schiller, J.I.: Kerberos: an authentication service for open network systems. In: USENIX Winter, pp. 191–202 (1988)Google Scholar
  23. 23.
    Stinson, D.R.: Combinatorial Designs - Constructions and Analysis. Springer, Heidelberg (2004).  https://doi.org/10.1007/b97564
  24. 24.
    Wei, R., Wu, J.: Product construction of key distribution schemes for sensor networks. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 280–293. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30564-4_20CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Mathematical SciencesNational Institute of Science Education and Research, HBNIBhubaneswarIndia

Personalised recommendations