Advertisement

OWL RL to Framework for Ontological Knowledge Integration Preliminary Transformation

  • Bogumiła Hnatkowska
  • Adrianna Kozierkiewicz
  • Marcin PietranikEmail author
Conference paper
  • 315 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12033)

Abstract

FOKI is a formally defined framework, proposed by authors, which addresses storing, processing, and integrating ontologies. Its model is based on a mathematical apparatus but lacks a concrete syntax. These features make difficult to use standardized benchmark datasets, usually expressed in OWL2, during experimental verification of FOKI’s validity. To enable a practical usage of FOKI, a set of bidirectional transformation rules (defined at the abstract syntax level) between the OWL2 RL and the framework is needed. However, due to major differences in base assumptions it is impossible to provide a straightforward translation between FOKI and OWL. Therefore, the aim of the paper is to identify which elements of OWL syntax can be transformed into FOKI formalism (on its current state of development) and which of these rules are bi-directional. The defined rules are illustrated with some overall examples. The paper also provides a short discussion about different approaches to transformation definitions.

Keywords

FOKI OWL2 Transformation Migration Ontology integration framework 

References

  1. 1.
    Afzal, H., Waqas, M., Naz, T.: OWLMap: fully automatic mapping of ontology into relational database schema. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 7(11), 7–15 (2017)Google Scholar
  2. 2.
    Andon, P.I., Reznichenko, V.A., Chistyakova, I.S.: Mapping of description logic to the relational data model. Cybern. Syst. Anal. 53(6), 963–977 (2017)CrossRefGoogle Scholar
  3. 3.
    Athanasiadis, I.N., Villa, F., Rizzoli, A.E.: Ontologies, JavaBeans and relational databases for enabling semantic programming. In: 31st Annual International Computer Software and Applications Conference (COMPSAC 2007), Beijing, China (2007)Google Scholar
  4. 4.
    Hajjamy, U.E., Alaoui, K., Alaoui, L., Bahaj, M.: Mapping UML to OWL ontology. J. Theor. Appl. Inf. Technol. 90(1), 126–143 (2016)Google Scholar
  5. 5.
    Hnatkowska, B.: Automatic SUMO to UML translation. e-Informatica Softw. Eng. J. 10(1), 51–67 (2016)Google Scholar
  6. 6.
    Hnatkowska, B., Woroniecki, P.: Transformation of OWL2 property axioms to Groovy. In: Tjoa, A.M., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds.) SOFSEM 2018. LNCS, vol. 10706, pp. 269–282. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-73117-9_19CrossRefGoogle Scholar
  7. 7.
    Hnatkowska, B., Kozierkiewicz, A., Pietranik, M.: Semi-automatic definition of attributes’ semantics for the purpose of ontology integration. Special Issue on Breakthroughs on Cross-Cutting Data Management, Data Analytics and Applied Data Science Information Systems Frontiers (submitted)Google Scholar
  8. 8.
    Karpovic, J., Nemuraite, L., Stankeviciene, M.: Requirements for semantic business vocabularies and rules for transforming them into consistent OWL2 ontologies. In: Skersys, T., Butleris, R., Butkiene, R. (eds.) ICIST 2012. CCIS, vol. 319, pp. 420–435. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33308-8_35CrossRefGoogle Scholar
  9. 9.
    Kendall, E., Linehan, M.H.: Mapping SBVR to OWL2, Technical report, IBM Research report, RC25363 (2013)Google Scholar
  10. 10.
    Kozierkiewicz, A., Pietranik, M.: The knowledge increase estimation framework for ontology integration on the concept level. J. Intell. Fuzzy Syst. 32(2), 1161–1172 (2017)CrossRefGoogle Scholar
  11. 11.
    Kozierkiewicz-Hetmańska, A., Pietranik, M., Hnatkowska, B.: The knowledge increase estimation framework for ontology integration on the instance level. In: Nguyen, N.T., Tojo, S., Nguyen, L.M., Trawiński, B. (eds.) ACIIDS 2017. LNCS (LNAI), vol. 10191, pp. 3–12. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-54472-4_1CrossRefGoogle Scholar
  12. 12.
    Kozierkiewicz-Hetmanska, A., Pietranik, M.: The knowledge increase estimation framework for integration of ontology instances’ relations. In: Lupeikiene, A., Vasilecas, O., Dzemyda, G. (eds.) DB&IS 2018. CCIS, vol. 838, pp. 172–186. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-97571-9_15CrossRefGoogle Scholar
  13. 13.
    Pietranik, M., Nguyen, N.T.: A multi-attribute based framework for ontology aligning. Neurocomputing 146, 276–290 (2014).  https://doi.org/10.1016/j.neucom.2014.03.067CrossRefGoogle Scholar
  14. 14.
    Jiménez-Ruiz, E., et al.: BootOX: practical mapping of RDBs to OWL 2. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 113–132. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25010-6_7CrossRefGoogle Scholar
  15. 15.
    Sadowska, M., Huzar, Z.: Representation of UML class diagrams in OWL 2 on the background of domain ontologies. e-Informatica Softw. Eng. J. 13(1), 63–103 (2019)Google Scholar
  16. 16.
    Tirmizi, S.H., et al.: Mapping between the OBO and OWL ontology languages. J. Biomed. Semant. 2(Suppl 1), S3 (2011).  https://doi.org/10.1186/2041-1480-2-S1-S3CrossRefGoogle Scholar
  17. 17.
    Xu, Z., Ni, Y., He, W., et al.: Automatic extraction of OWL ontologies from UML class diagrams: a semantics-preserving approach. World Wide Web 15, 517 (2012).  https://doi.org/10.1007/s11280-011-0147-zCrossRefGoogle Scholar
  18. 18.
    Zedlitz, J., Jörke, J., Luttenberger, N.: From UML to OWL 2. In: Lukose, D., Ahmad, A.R., Suliman, A. (eds.) KTW 2011. CCIS, vol. 295, pp. 154–163. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32826-8_16CrossRefGoogle Scholar
  19. 19.
  20. 20.
  21. 21.
  22. 22.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Wroclaw University of Science and TechnologyWrocławPoland

Personalised recommendations