Advertisement

Sentence Writing Test for Parkinson Disease Modeling: Comparing Predictive Ability of Classifiers

  • Aleksei Netšunajev
  • Sven NõmmEmail author
  • Aaro Toomela
  • Kadri Medijainen
  • Pille Taba
Conference paper
  • 299 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12033)

Abstract

The present paper is devoted to the modeling of the sentence writing test to support diagnostics of Parkinson’s disease. Combination of the digitalized fine motor tests and machine learning based analysis frequently lead the results of very high accuracy. Nevertheless, in many cases, such results do not allow proper interpretation and are not fully understood by a human practitioner. One of the distinctive properties of the proposed approach is that the set of features consists of parameters that may be easily interpreted. Features that represent size, kinematics, duration and fluency of writing are calculated for each individual letter. Furthermore, proposed approach is language agnostic and may be used for any language based either on Latin or Cyrillic alphabets. Finally, the feature set describing the test results contains the parameters showing the amount and smoothness of the fine motions which in turn allows to precisely pin down rigidity and unpurposeful motions.

References

  1. 1.
    Aggarwal, C.C.: Data Mining. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-14142-8CrossRefzbMATHGoogle Scholar
  2. 2.
    Al-Dmour, A., Fraij, F.: Segmenting arabic handwritten documents into text lines and words. Int. J. Adv. Comput. Technol. 6(3), 109–119 (2004)Google Scholar
  3. 3.
    Drotar, P., Mekyska, J., Rektorova, I., Masarova, L., Smékal, Z., Faundez-Zanuy, M.: Evaluation of handwriting kinematics and pressure for differential diagnosis of parkinson’s disease. Artif. Intell. Med. 67, 39–46 (2016).  https://doi.org/10.1016/j.artmed.2016.01.004CrossRefGoogle Scholar
  4. 4.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. SSS. Springer, New York (2009).  https://doi.org/10.1007/978-0-387-84858-7CrossRefzbMATHGoogle Scholar
  5. 5.
    Letanneux, A., Danna, J., Velay, J.L., Viallet, F., Pinto, S.: From micrographia to Parkinson’s disease dysgraphia. Mov. Disord. 29(12), 1467–1475 (2014).  https://doi.org/10.1002/mds.25990CrossRefGoogle Scholar
  6. 6.
    Moustafa, A.A., Chakravarthy, S., Phillips, J.R., Gupta, A., Keri, S., Polner, B., Frank, M.J., Jahanshahi, M.: Motor symptoms in parkinson’s disease: a unified framework. Neurosci. Biobehav. Rev. 68, 727–740 (2016).  https://doi.org/10.1016/j.neubiorev.2016.07.010CrossRefGoogle Scholar
  7. 7.
    Nõmm, S., Bardõš, K., Toomela, A., Medijainen, K., Taba, P.: Detailed analysis of the luria’s alternating seriestests for parkinson’s disease diagnostics. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1347–1352, December 2018.  https://doi.org/10.1109/ICMLA.2018.00219
  8. 8.
    Nõmm, S., Toomela, A., Kozhenkina, J., Toomsoo, T.: Quantitative analysis in the digital luria’s alternating series tests. In: 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV), pp. 1–6, November 2016.  https://doi.org/10.1109/ICARCV.2016.7838746
  9. 9.
    Nackaerts, E., et al.: Validity and reliability of a new tool to evaluate handwriting difficulties in Parkinson’s disease. Plos One 12(3), 1–14 (2017).  https://doi.org/10.1371/journal.pone.0173157CrossRefGoogle Scholar
  10. 10.
    Nõmm, S., Toomela, A.: An alternative approach to measure quantity and smoothness of the human limb motions. Est. J. Eng. 19(4), 298–308 (2013)CrossRefGoogle Scholar
  11. 11.
    Rosenblum, S., Samuel, M., Zlotnik, S., Erikh, I., Schlesinger, I.: Handwriting as an objective tool for parkinson’s disease diagnosis. J. Neurol. 260, 2357–2361 (2013).  https://doi.org/10.1007/s00415-013-6996-xCrossRefGoogle Scholar
  12. 12.
    Seni, G., Cohen, E.: External word segmentation of off-line handwritten text lines. Pattern Recogn. 27(1), 41–52 (1994).  https://doi.org/10.1016/0031-3203(94)90016-7CrossRefGoogle Scholar
  13. 13.
    Smits, E., et al.: Standardized handwriting to assess bradykinesia, micrographia and tremor in parkinson’s disease. PLoS ONE 9 (2014).  https://doi.org/10.1371/journal.pone.0097614
  14. 14.
    Stepień, P., Kawa, J., Wieczorek, D., Dabrowska, M., Sławek, J., Sitek, E.J.: Computer aided feature extraction in the paper version of luria’s alternating series test in progressive supranuclear palsy. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.) ITIB 2018. AISC, vol. 762, pp. 561–570. Springer, Cham (2019).  https://doi.org/10.1007/978-3-319-91211-0_49CrossRefGoogle Scholar
  15. 15.
    Tan, J., Lai, J.H., Wang, C.D., Wang, W.X., Zuo, X.X.: A new handwritten character segmentation method based on nonlinear clustering. Neurocomputing 89, 213–219 (2012).  https://doi.org/10.1016/j.neucom.2012.02.026CrossRefGoogle Scholar
  16. 16.
    Thomas, M., Lenka, A., Kumar Pal, P.: Handwriting analysis in Parkinson’s disease: current status and future directions. Mov. Disord. Clin. Pract. 4(6), 806–818 (2017).  https://doi.org/10.1002/mdc3.12552CrossRefGoogle Scholar
  17. 17.
    Van Gemmert, A., Hans-Leo, T., George, S.: Parkinsonian patients reduce their stroke size with increased processing demands. Brain Cogn. 47(3), 504–512 (2001).  https://doi.org/10.1006/brcg.2001.1328CrossRefGoogle Scholar
  18. 18.
    Lange, K.W., et al.: Brain dopamine and kinematics of graphomotor functions. Human Mov. Sci. 25, 492–509 (2006).  https://doi.org/10.1016/j.humov.2006.05.006CrossRefGoogle Scholar
  19. 19.
    Shukla, A.W., Ounpraseuth, S., Okun, M., Gray, V., Schwankhaus, J.: Micrographia and related deficits in parkinson’s disease: a cross-sectional study. BMJ Open 2(3), e000628 (2012).  https://doi.org/10.1136/bmjopen-2011-000628CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Aleksei Netšunajev
    • 1
  • Sven Nõmm
    • 2
    Email author
  • Aaro Toomela
    • 3
  • Kadri Medijainen
    • 4
  • Pille Taba
    • 5
  1. 1.Tallinn University of TechnologyTallinnEstonia
  2. 2.Department of Software ScienceTallinn University of TechnologyTallinnEstonia
  3. 3.School of Natural Sciences and HealthTallinn UniversityTallinnEstonia
  4. 4.Institute of Sport Sciences PhysiotherapyUniversity of TartuTartuEstonia
  5. 5.Department of Neurology and NeurosurgeryUniversity of TartuTartuEstonia

Personalised recommendations