Advertisement

Finger-Vein Classification Using Granular Support Vector Machine

  • Ali SelamatEmail author
  • Roliana Ibrahim
  • Sani Suleiman Isah
  • Ondrej Krejcar
Conference paper
  • 311 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12033)

Abstract

The protection of control and intelligent systems across networks and interconnected components is a significant concern. Biometric systems are smart systems that ensure the safety and protection of the information stored across these systems. A breach of security in a biometric system is a breach in the overall security of data and privacy. Therefore, the advancement in improving the safety of biometric systems forms part of ensuring a robust security system. In this paper, we aimed at strengthening the finger vein classification that is acknowledged to be a fraud-proof unimodal biometric trait. Despite several attempts to enhance finger-vein recognition by researchers, the classification accuracy and performance is still a significant concern in this research. This is due to high dimensionality and invariability associated with finger-vein image features as well as the inability of small training samples to give high accuracy for the finger-vein classifications. We aim to fill this gap by representing the finger vein features in the form of information granules using an interval-based hyperbox granular approach and then apply a dimensionality reduction on these features using principal component analysis (PCA). We further apply a granular classification using an improved granular support vector machine (GSVM) technique based on weighted linear loss function to avoid overfitting and yield better generalization performance and enhance classification accuracy. We named our approach PCA-GSVM. The experimental results show that the classification of finger-vein granular features provides better results when compared with some state-of-the-art biometric techniques used in multimodal biometric systems.

Keywords

Granular computing Cybersecurity Biometric Finger-vein Support vector machines 

Notes

Acknowledgments

This research has been funded by Universiti Teknologi Malaysia (UTM) under Research University Grant Vot-20H04, Malaysia Research University Network (MRUN) Vot 4L876 and the Fundamental Research Grant Scheme (FRGS) Vot 5F073 supported under Ministry of Education Malaysia. The work is partially supported by the SPEV project, University of Hradec Kralove, FIM, Czech Republic (ID: 21xx-2020). We are also grateful for the support of Ph.D. student Sebastien Mambou in consultations regarding application aspects.

References

  1. 1.
    Onuiri, E.E., Idowu, S.A., Komolafe, O.: Electronic health record systems, and cyber- security challenges. In: International Conference African Development Issues, pp. 98–105 (2015)Google Scholar
  2. 2.
    Syazana-Itqan, K., Syafeeza, A.R., Saad, N.M., Hamid, N.A., Saad, W.H.B.M.: A review of finger-vein biometrics identification approaches. Indian J. Sci. Technol. 9 (2016).  https://doi.org/10.17485/ijst/2016/v9i32/99276
  3. 3.
    Shaheed, K., Liu, H., Yang, G., Qureshi, I., Gou, J., Yin, Y.: A systematic review of finger vein recognition techniques. Information 9, 213 (2018).  https://doi.org/10.3390/info9090213CrossRefGoogle Scholar
  4. 4.
    Yang, J, Wei, J., Shi, Y.: Accurate ROI localization and hierarchical hyper-sphere model for finger-vein recognition. Neurocomputing, 1–11.  https://doi.org/10.1016/j.neucom.2018.02.098
  5. 5.
    Hong, H.G., Lee, M.B., Park, K.R.: Convolutional neural network-based finger-vein recognition using NIR image sensors. Sensors (Switzerland) 17 (2017).  https://doi.org/10.3390/s17061297
  6. 6.
    Liu, Z., Yin, Y., Wang, H., Song, S., Li, Q.: Finger vein recognition with manifold learning. J. Netw. Comput. Appl. 33, 275–282 (2010).  https://doi.org/10.1016/j.jnca.2009.12.006CrossRefGoogle Scholar
  7. 7.
    Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 90, 111–127 (1997).  https://doi.org/10.1016/S0165-0114(97)00077-8MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Liu, S., Pedrycz, W., Gacek, A., Dai, Y.: Development of information granules of higher type and their applications to granular models of time series. Eng. Appl. Artif. Intell. 71, 60–72 (2018).  https://doi.org/10.1016/j.engappai.2018.02.012CrossRefGoogle Scholar
  9. 9.
    Gavrilova, M.L.: Biometric-based authentication for cyberworld security: challenges and opportunities. Can. Def. Foreign Aff. Inst., 1–9 (2014).  https://doi.org/10.1103/PhysRevE.64.041902
  10. 10.
    Isah, S.S., Selamat, A., Ibrahim, R., Anuar, S.: Granular computing approach to cybersecurity problem, In: Fujita, E.H.-V. H. (ed.) New Trends in Intelligent Software Methodologies, Tools and Techniques, vol. 303. IOS Press Ebooks, Granada Spain, pp. 215–225 (2018).  https://doi.org/10.3233/978-1-61499-900-3-215
  11. 11.
    Guo, H., Wang, W.: Granular support vector machine: a review. Artif. Intell. Rev. 51(1), 19–32 (2017).  https://doi.org/10.1007/s10462-017-9555-5MathSciNetCrossRefGoogle Scholar
  12. 12.
    Tang, Y., Jin, B., Sun, Y., Zhang, Y.-Q.: Granular support vector machines for medical binary classification problems. In: IEEE Symposium Computational Intelligence Bioinformatics Computational Biology, pp. 73–78 (2005).  https://doi.org/10.1109/cibcb.2004.1393935
  13. 13.
    Tang, Y., Jin, B., Zhang, Y.-Q., Fang, H., Wang, B.: Granular support vector machines using linear decision hyperplanes for fast medical binary classification. In: 14th IEEE International Conference Fuzzy Systems 2005. FUZZ 2005, pp. 138–142 (2005).  https://doi.org/10.1109/FUZZY.2005.1452382
  14. 14.
    Tang, Y., Jin, B., Zhang, Y.Q.: Granular support vector machines with association rules mining for protein homology prediction. Artif. Intell. Med. 35, 121–134 (2005).  https://doi.org/10.1016/j.artmed.2005.02.003CrossRefGoogle Scholar
  15. 15.
    Tang, Y., Zhang, Y.Q.: Granular support vector machines with data cleaning for fast and accurate biomedical binary classification. In: 2005 IEEE International Conference Granular Computing, pp. 262–265 (2005).  https://doi.org/10.1109/GRC.2005.1547281
  16. 16.
    Huang, H., Ding, S., Jin, F., Yu, J.: A novel granular support vector machine based on mixed Kernel function. Int. J. Digit. Content Technol. Appl. 6, 484–492 (2012).  https://doi.org/10.4156/jdcta.vol6.issue20.52CrossRefGoogle Scholar
  17. 17.
    Pedrycz, W.: Granular Computing: Analysis and Design of Intelligent Systems. CRC Press, 2016. https://books.google.com.my/books?id=yV7NBQAAQBAJ
  18. 18.
    Asaari, M.S.M., Suandi, S.A., Rosdi, B.A.: Fusion of band limited phase only correlation and width centroid contour distance for finger-based biometrics. Expert Syst. Appl. 41, 3367–3382 (2014).  https://doi.org/10.1016/j.eswa.2013.11.033CrossRefGoogle Scholar
  19. 19.
    Gupta, P., Gupta, P.: An accurate finger vein based verification system. Digit. Sig. Process. A Rev. J. 38, 43–52 (2015).  https://doi.org/10.1016/j.dsp.2014.12.003CrossRefGoogle Scholar
  20. 20.
    Gumus, E., Kilic, N., Sertbas, A., Ucan, O.N.: Evaluation of face recognition techniques using PCA, wavelets and SVM. Expert Syst. Appl. 37, 6404–6408 (2010).  https://doi.org/10.1016/j.eswa.2010.02.079CrossRefGoogle Scholar
  21. 21.
    Kurşun, O., Favorov, O.V.: SINBAD automation of scientific discovery: from factor analysis to theory synthesis. Nat. Comput. 3, 207–233 (2004).  https://doi.org/10.1023/B:NACO.0000027756.50327.26MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3, 71–86 (1991)CrossRefGoogle Scholar
  23. 23.
    Khan, M., Subramanian, R., Khan, N.: Low dimensional representation of dorsal hand vein features using principal component analysis (PCA). World Acad. Sci. 3, 1001–1007 (2009)Google Scholar
  24. 24.
    Pedrycz, W., Homenda, W.: Building the fundamentals of granular computing: a principle of justifiable granularity. Appl. Soft Comput. J. 13, 4209–4218 (2013).  https://doi.org/10.1016/j.asoc.2013.06.017CrossRefGoogle Scholar
  25. 25.
    Roy, A., Singha, J., Devi, S.S., Laskar, R.H.: Impulse noise removal using SVM classification based fuzzy filter from grayscale images. Sig. Process. 128, 262–273 (2016).  https://doi.org/10.1016/j.sigpro.2016.04.007CrossRefGoogle Scholar
  26. 26.
    Tang, Y., Jin, B., Sun, Y., Zhang, Y.-Q.: Granular support vector machines for medical binary classification problems. In: 2014 Symposium on Computational Intelligence in Bioinformatics Computational Biology, CIBCB 2004, pp. 73–78 (2004).  https://doi.org/10.1109/CIBCB.2004.1393935
  27. 27.
    Aguilar, J.F.: Adapted fusion schemes for multimodal biometric, n.d Google Scholar
  28. 28.
    Das, R., Piciucco, E., Maiorana, E., Campisi, P.: Convolutional neural network for finger-vein-based biometric identification. IEEE Trans. Inf. Forensics Secur. 14, 360–373 (2018).  https://doi.org/10.1109/TIFS.2018.2850320CrossRefGoogle Scholar
  29. 29.
    Wang, J., Yang, K., Pan, Z., Wang, G., Li, M., Li, Y.: Minutiae-based weighting aggregation of deep convolutional features for vein recognition. IEEE Access 6, 61640–61650 (2018).  https://doi.org/10.1109/ACCESS.2018.2876396CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ali Selamat
    • 1
    Email author
  • Roliana Ibrahim
    • 2
  • Sani Suleiman Isah
    • 2
  • Ondrej Krejcar
    • 3
  1. 1.Malaysia Japan International Institute of Technology (MJIIT), Universiti Teknologi MalaysiaKuala LumpurMalaysia
  2. 2.School of Computing, Faculty of Engineering, UTM and Media and Games Center of Excellence (MagicX), Universiti Teknologi MalaysiaJohor BahruMalaysia
  3. 3.Faculty of Informatics and Management,University of Hradec KraloveHradec KraloveCzech Republic

Personalised recommendations