Advertisement

Graph-Based Optimization of Public Lighting Retrofit

  • Adam Sędziwy
  • Leszek KotulskiEmail author
Conference paper
  • 313 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12033)

Abstract

Modernization of public lighting (also referred to as a retrofit) such as replacing high-pressure sodium lamps with LED ones, burdens the budgets of municipalities. For that reason such investments are usually made in phases, spanned over a period of several years, which scopes are determined by financial resources. It should be remarked that selection of lamps for modernization is based on various criteria such as lamp aging, power efficiency of an installation but also some high-level objectives such as a payback period of an investment. In this work we propose the scalable computational, graph-based approach which enables optimizing lamp modernization schedule, towards reduced payback time. The presented results are based on analysis of real-life data of nearly 10,000 streetlights.

Keywords

Graphs Graph methods LED lighting Roadway lighting Lighting retrofit 

References

  1. 1.
    Australian/New Zealand Standard: AS/NZS 1158.1.1:2005 Lighting for roads and public spaces Vehicular traffic (Category V) lighting - Performance and design requirements. SAI Global Limited (2005)Google Scholar
  2. 2.
    European Committee For Standarization: Road Lighting. Performance requirements, EN 13201-2:2015 (2015)Google Scholar
  3. 3.
    Illuminating Engineering Society of North America (IESNA): American National Standard Practice For Roadway Lighting, RP-8-14. IESNA, New York (2014)Google Scholar
  4. 4.
    Kotulski, L.: On the control complementary graph replication. In: Mazurkiewicz, J., et al. (eds.) Models and methodology of system dependability, Monographs of System Dependability, vol. 1. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław (2010)Google Scholar
  5. 5.
    Kotulski, L., Sędziwy, A.: Parallel graph transformations supported by replicated complementary graphs. In: Dobnikar, A., Lotrič, U., Šter, B. (eds.) ICANNGA 2011. LNCS, vol. 6594, pp. 254–264. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20267-4_27 CrossRefGoogle Scholar
  6. 6.
    Kotulski, L., Sedziwy, A.: Agent framework for decomposing a graph into the equally sized subgraphs. In: FCS (2008)Google Scholar
  7. 7.
    Peña-García, A., Gil-Martín, L., Hernández-Montes, E.: Use of sunlight in road tunnels: an approach to the improvement of light-pipes’ efficacy through heliostats. Tunn. Undergr. Space Technol. 60, 135–140 (2016).  https://doi.org/10.1016/j.tust.2016.08.008. http://www.sciencedirect.com/science/article/pii/S0886779815302121CrossRefGoogle Scholar
  8. 8.
    Pena-García, A., Gómez-Lorente, D., Espín, A., Rabaza, O.: New rules of thumb maximizing energy efficiency in street lighting with discharge lamps: the general equations for lighting design. Eng. Optim. 48(6), 1080–1089 (2016).  https://doi.org/10.1080/0305215X.2015.1085715. http://dx.doi.org/10.1080/0305215X.2015.1085715CrossRefGoogle Scholar
  9. 9.
    Rabaza, O., Pena-García, A., Pérez-Ocón, F., Gómez-Lorente, D.: A simple method for designing efficient public lighting, based on new parameter relationships. Expert Syst. Appl. 40(18), 7305–7315 (2013). http://goo.gl/10UQGmCrossRefGoogle Scholar
  10. 10.
    Salata, F., et al.: Energy optimization of road tunnel lighting systems. Sustainability 7(7), 9664 (2015).  https://doi.org/10.3390/su7079664CrossRefGoogle Scholar
  11. 11.
    Sędziwy, A.: Effective graph representation for agent-based distributed computing. In: Jezic, G., Kusek, M., Nguyen, N.-T., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2012. LNCS (LNAI), vol. 7327, pp. 638–647. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-30947-2_69CrossRefGoogle Scholar
  12. 12.
    Sȩdziwy, A.: Sustainable street lighting design supported by hypergraph-based computational model. Sustainability 8(1), 13 (2016)CrossRefGoogle Scholar
  13. 13.
    Sędziwy, A., Kotulski, L.: Graph-based optimization of energy efficiency of street lighting. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9120, pp. 515–526. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19369-4_46CrossRefGoogle Scholar
  14. 14.
    Sedziwy, A., Kotulski, L.: Towards highly energy-efficient roadway lighting. Energies 9(4), 263 (2016).  https://doi.org/10.3390/en9040263. https://doi.org/10.3390%2Fen9040263CrossRefGoogle Scholar
  15. 15.
    Wojnicki, I., Ernst, S., Kotulski, L., Sȩdziwy, A.: Advanced street lighting control. Expert Syst. Appl. 41(4, Part 1), 999–1005 (2014).  https://doi.org/10.1016/j.eswa.2013.07.044. http://www.sciencedirect.com/science/article/pii/S0957417413005319CrossRefGoogle Scholar
  16. 16.
    Wojnicki, I., Kotulski, L.: Street lighting control, energy consumption optimization. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10246, pp. 357–364. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59060-8_32. http://bit.ly/2QnbhZVCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.AGH University of Science and TechnologyKrakówPoland

Personalised recommendations