Continuous-Time Approach to Discrete-Time PID Control for UPS Inverters - A Case Study

  • Marian BłachutaEmail author
  • Zbigniew Rymarski
  • Robert Bieda
  • Krzysztof Bernacki
  • Rafal Grygiel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12033)


A quasi-continuous-time approach to the design of a digital PID control for DC/AC inverters with LC filter that use semiconductor switches producing PWM output voltage is presented. It is shown that an appropriately chosen continuous-time model of the digital controller with the PWM converter behaves like the actual discrete-time system, which allows for a simple controller design. SIMULINK models are used to validate this approach for a nonlinear rectifier load. The outcomes are compared with a real inverter experiment.


Inverter PWM THD Modeling Simulation PID control Time scale separation 


  1. 1.
    Ben-Brahim L., Yokoyama T., Kawamura A.: Digital control for UPS inverters. The Fifth International Conference on Power Electronics and Drive Systems, PEDS 2003. vol. 2, 17–20 November 2003, pp. 1252–1257 (2003)Google Scholar
  2. 2.
    Blachuta, M., Rymarski, Z., Bieda, R., Bernacki, K., Grygiel, R.: Design, Modeling and Simulation of PID Control for DC/AC Inverters, International Conference MMAR 2019. Miedzyzdroje, Poland (2019)Google Scholar
  3. 3.
    Blachuta, M., Bieda, R., Grygiel, R.: Regulatory Control Design for a Double Tank System Based on Time-Scale Separation. Intelligent Information and Database Systems, Springer Nature, LNCS 11431, 420–430 (2019)CrossRefGoogle Scholar
  4. 4.
    Van der Broeck H.W., Miller M.: Harmonics in DC to AC converters of single phase uninterruptible power supplies. 17th International Telecommunications Energy Conference, INTELEC ’95, pp. 653–658 (1995)Google Scholar
  5. 5.
    Gui Y., Wei B., Li M., Guerrero J.M., Vasquez J.C.: Passivity-based coordinated control for islanded AC microgrid. Applied. Energy, vol. 229 (C), Elsevier, pp. 551–561, (2018)
  6. 6.
    Komurcugil H.: Improved passivity-based control method and its robustness analysis for single-phase uninterruptible power supply inverters, IET Power Electronics, 8, (8), pp. 1558 — 1570 (2015)Google Scholar
  7. 7.
    Luo, F.L., Ye, H., Rashid, M.: Digital Power Electronics and Applications. Elsevier Academic Press, USA (2006)Google Scholar
  8. 8.
    Meshram R.V., Bhagwat M., Khade S., Wagh S.R., Aleksandar M., Stankovic A.M., Singh N.M: Port-Controlled Phasor Hamiltonian Modeling and IDA-PBC Control of Solid-State Transformer. IEEE Transactions on Control Systems Technology, vol. 27, pp. 161–174, (2017)
  9. 9.
    Rymarski, Z.: Measuring the real parameters of single-phase voltage source inverters for UPS systems. International Journal of Electronics 104(6), 1020–1033 (2017). Scholar
  10. 10.
    Rymarski Z., Bernacki K., Dyga L., Davari P.: Passivity-Based Control Design Methodology for UPS Systems, MDPI-Energies, vol. 12, issue 22, 4301, pp 1–19, (2019).
  11. 11.
    Serra, F.M., De Angelo, C.H., Forchetti, D.G.: ‘IDA-PBC control of a DC–AC converter for sinusoidal three-phase voltage generation’, International Journal of Electronics, 104, (1), pp. 93-110 (2017)Google Scholar
  12. 12.
    Yurkevich V.D.: Design of Nonlinear Control Systems with the Highest Derivative in Feedback. World Scientific, (2004)Google Scholar
  13. 13.
    Dao Zhou, Yipeng Song, Blaabjerg F.: “Modeling and Control of Three-Phase AC/DC Converter Including Phase-Locked Loop" Chapter 5, pp. 117–152 in “Control of Power Electronic Converters and Systems, Volume”, edited by Blaabjerg F., Elsevier, Academic Press (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Chair of Automation and RoboticsSilesian University of TechnologyGliwicePoland
  2. 2.Chair of Electronics, Electrical Engineering and MicroelectronicsSilesian University of TechnologyGliwicePoland

Personalised recommendations