Advertisement

A Trading Framework Based on Fuzzy Moore Machines

  • Iván Calvo
  • Mercedes G. Merayo
  • Manuel NúñezEmail author
Conference paper
  • 301 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12033)

Abstract

The everlasting competition between investing strategies has seen a remarkable impulse after automated trading algorithms took their place. Any failure in this kind of algorithms may end up implying huge monetary losses. Because of that, these systems may represent an important application of formal methods. Furthermore, considering the inherent uncertainty of stock markets and the usual imprecision in the definition of many investment strategies, any attempt to model these software systems is very challenging. In this paper we propose a complete framework, built upon the formalism of fuzzy automata, that can be used to define and evaluate a variety of automatic trading strategies based on the observation of candlestick patterns.

Keywords

Fuzzy automata Automated trading Candlestick patterns 

References

  1. 1.
    Andrés, C., Llana, L., Núñez, M.: Self-adaptive fuzzy-timed systems. In: 13th IEEE Congress on Evolutionary Computation, CEC 2011, pp. 115–122. IEEE Computer Society (2011)Google Scholar
  2. 2.
    Bernal, A., Cambronero, M.E., Núñez, A., Cañizares, P.C., Valero, V.: Improving cloud architectures using UML profiles and M2T transformation techniques. J. Supercomput. 75(12), 8012–8058 (2019)CrossRefGoogle Scholar
  3. 3.
    Bonfanti, S., Gargantini, A., Mashkoor, A.: A systematic literature review of the use of formal methods in medical software systems. J. Softw. Evol. Process 30(5), e1943 (2018)CrossRefGoogle Scholar
  4. 4.
    Boubeta-Puig, J., Díaz, G., Macià, H., Valero, V., Ortiz, G.: MEdit4CEP-CPN: an approach for complex event processing modeling by prioritized colored petri nets. Inf. Syst. 81, 267–289 (2019)CrossRefGoogle Scholar
  5. 5.
    Bulkowski, T.N.: Encyclopedia of Candlestick Charts. Wiley, New York (2008)Google Scholar
  6. 6.
    Calvo, I., Merayo, M.G., Núñez, M.: An improved and tool-supported fuzzy automata framework to analyze heart data. In: Nguyen, N.T., Hoang, D.H., Hong, T.-P., Pham, H., Trawiński, B. (eds.) ACIIDS 2018. LNCS (LNAI), vol. 10751, pp. 694–704. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75417-8_65CrossRefGoogle Scholar
  7. 7.
    Calvo, I., Merayo, M.G., Núñez, M.: AUNTY: a tool to automatically analyze data using fuzzy automata. In: 3rd International Conference on Computational Intelligence and Applications, ICCIA 2018, pp. 102–106. IEEE Computer Society (2018)Google Scholar
  8. 8.
    Calvo, I., Merayo, M.G., Núñez, M.: A methodology to analyze heart data using fuzzy automata. J. Intell. Fuzzy Syst. 37, 7389–7399 (2019) CrossRefGoogle Scholar
  9. 9.
    Calvo, I., Merayo, M.G., Núñez, M., Palomo-Lozano, F.: Conformance relations for fuzzy automata. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2019. LNCS, vol. 11506, pp. 753–765. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-20521-8_62CrossRefGoogle Scholar
  10. 10.
    Cañizares, P.C., Núñez, A., Merayo, M.G.: Mutomvo: mutation testing framework for simulated cloud and HPC environments. J. Syst. Softw. 143, 187–207 (2018)CrossRefGoogle Scholar
  11. 11.
    Cavalli, A.R., Higashino, T., Núñez, M.: A survey on formal active and passive testing with applications to the cloud. Ann. Telecommun. 70(3–4), 85–93 (2015)CrossRefGoogle Scholar
  12. 12.
    Delgado-Pérez, P., Rose, L.M., Medina-Bulo, I.: Coverage-based quality metric of mutation operators for test suite improvement. Software Qual. J. 27(2), 823–859 (2019)CrossRefGoogle Scholar
  13. 13.
    Doostfatemeh, M., Kremer, S.C.: New directions in fuzzy automata. Int. J. Approximate Reasoning 38(2), 175–214 (2005)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gómez-Abajo, P., Guerra, E., de Lara, J., Merayo, M.G.: A tool for domain-independent model mutation. Sci. Comput. Program. 163, 85–92 (2018)CrossRefGoogle Scholar
  15. 15.
    Gutiérrez-Madroñal, L., García-Domínguez, A., Medina-Bulo, I.: Evolutionary mutation testing for IoT with recorded and generated events. Softw. Pract. Exp. 49(4), 640–672 (2019)CrossRefGoogle Scholar
  16. 16.
    Hierons, R.M., Merayo, M.G., Núñez, M.: Controllable test cases for the distributed test architecture. In: Cha, S.S., Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 201–215. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-88387-6_16CrossRefzbMATHGoogle Scholar
  17. 17.
    Hierons, R.M., Merayo, M.G., Núñez, M.: An extended framework for passive asynchronous testing. J. Log. Algebraic Methods Program. 86(1), 408–424 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hierons, R.M., Merayo, M.G., Núñez, M.: Bounded reordering in the distributed test architecture. IEEE Trans. Reliab. 67(2), 522–537 (2018)CrossRefGoogle Scholar
  19. 19.
    Hierons, R.M., Núñez, M.: Implementation relations and probabilistic schedulers in the distributed test architecture. J. Syst. Softw. 132, 319–335 (2017)CrossRefGoogle Scholar
  20. 20.
    Hilpisch, Y.: Python for Finance: Analyze Big Financial Data. O’Reilly Media, Sebastopol (2014)Google Scholar
  21. 21.
    Ibias, A., Hierons, R.M., Núñez, M.: Using squeeziness to test component-based systems defined as finite state machines. Inf. Softw. Technol. 112, 132–147 (2019)CrossRefGoogle Scholar
  22. 22.
    Lamport, L.: Who builds a house without drawing blueprints? Commun. ACM 58(4), 38–41 (2015)CrossRefGoogle Scholar
  23. 23.
    Lecomte, T., Deharbe, D., Prun, E., Mottin, E.: Applying a formal method in industry: a 25-year trajectory. In: Cavalheiro, S., Fiadeiro, J. (eds.) SBMF 2017. LNCS, vol. 10623, pp. 70–87. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70848-5_6CrossRefGoogle Scholar
  24. 24.
    López, N., Núñez, M., Rodríguez, I., Rubio, F.: A formal framework for e-barter based on microeconomic theory and process algebras. In: Unger, H., Böhme, T., Mikler, A. (eds.) IICS 2002. LNCS, vol. 2346, pp. 217–228. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-48080-3_19CrossRefGoogle Scholar
  25. 25.
    Magnani, L., Bertolotti, T. (eds.): Handbook of Model-Based Science. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-30526-4CrossRefGoogle Scholar
  26. 26.
    Merayo, M.G., Hierons, R.M., Núñez, M.: Passive testing with asynchronous communications and timestamps. Distrib. Comput. 31(5), 327–342 (2018)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Merayo, M.G., Hierons, R.M., Núñez, M.: A tool supported methodology to passively test asynchronous systems with multiple users. Inf. Softw. Technol. 104, 162–178 (2018)CrossRefGoogle Scholar
  28. 28.
    Mordeson, J.N., Malik, D.S.: Fuzzy Automata and Languages: Theory and Applications. Chapman & Hall/CRC, Boca Raton (2002)CrossRefGoogle Scholar
  29. 29.
    Mraz, M., Lapanja, I., Zimic, N., Virant, J.: Fuzzy numbers as inputs to fuzzy automata. In: 18th International Conference of the North American Fuzzy Information Processing Society, NAFIPS 1999, pp. 453–456. IEEE Computer Society (1999)Google Scholar
  30. 30.
    Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.: How Amazon web services uses formal methods. Commun. ACM 58(4), 66–73 (2015)CrossRefGoogle Scholar
  31. 31.
    Nison, S.: Japanese Candlestick Charting Techniques: A Contemporary Guide to the Ancient Investment Techniques of the Far East, 2nd edn. Prentice Hall, Upper Saddle River (2001)Google Scholar
  32. 32.
    Núñez, M., Rodríguez, I.: Conformance testing relations for timed systems. In: Grieskamp, W., Weise, C. (eds.) FATES 2005. LNCS, vol. 3997, pp. 103–117. Springer, Heidelberg (2006).  https://doi.org/10.1007/11759744_8CrossRefzbMATHGoogle Scholar
  33. 33.
    Wee, W.G., Fu, K.S.: A formulation of fuzzy automata and its application as a model of learning systems. IEEE Trans. Syst. Sci. Cybern. 5(3), 215–223 (1969)CrossRefGoogle Scholar
  34. 34.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)CrossRefGoogle Scholar
  35. 35.
    Zadeh, L.A.: Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems. Advances in Fuzzy Systems - Applications and Theory, vol. 6. World Scientific Press, Hackensack (1996)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Departamento Sistemas Informáticos y ComputaciónUniversidad Complutense de MadridMadridSpain

Personalised recommendations