Design and Characterization of Light Field and Holographic Near-Eye Displays

  • Erdem SahinEmail author
  • Jani Mäkinen
  • Ugur Akpinar
  • Yuta Miyanishi
  • Atanas Gotchev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11900)


The light field and holographic displays constitute two important categories of advanced three-dimensional displays that are aimed at delivering all physiological depth cues of the human visual system, such as stereo cues, motion parallax, and focus cues, with sufficient accuracy. As human observers are the end-users of such displays, the delivered spatial information (e.g., perceptual spatial resolution) and view-related image quality factors (e.g., focus cues) are significantly dependent on the characteristics of the human visual system. Retinal image formation models enable rigorous characterization and subsequently efficient design of light field and holographic displays. In this chapter the ray-based near-eye light field and wave-based near-eye holographic displays are reviewed, and the corresponding retinal image formation models are discussed. In particular, most of the discussion is devoted to characterization of the perceptual spatial resolution and focus cues.


Light field display Holographic display Display characterization Perceptual resolution Focus cues 


  1. 1.
    Adelson, E.H., Bergen, J.R.: The plenoptic function and the elements of early vision (1991)Google Scholar
  2. 2.
    Akpinar, U., Sahin, E., Gotchev, A.: Viewing simulation of integral imaging display based on wave optics. In: 2018–3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON), pp. 1–4. IEEE (2018)Google Scholar
  3. 3.
    Amako, J., Miura, H., Sonehara, T.: Speckle-noise reduction on kinoform reconstruction using a phase-only spatial light modulator. Appl. Opt. 34(17), 3165–3171 (1995)CrossRefGoogle Scholar
  4. 4.
    Banks, M.S., Hoffman, D.M., Kim, J., Wetzstein, G.: 3D displays. Annu. Rev. Vis. Sci. 2(1), 397–435 (2016). pMID: 28532351CrossRefGoogle Scholar
  5. 5.
    Boev, A., Poikela, M., Gotchev, A.P., Aksay, A.: Modelling of the stereoscopic HVS (2009)Google Scholar
  6. 6.
    Bregovic, R., Sahin, E., Vagharshakyan, S., Gotchev, A.: Signal processing methods for light field displays. In: Bhattacharyya, S.S., Deprettere, E.F., Leupers, R., Takala, J. (eds.) Handbook of Signal Processing Systems, pp. 3–50. Springer, Cham (2019). Scholar
  7. 7.
    Cholewiak, S.A., Love, G.D., Banks, M.S.: Creating correct blur and its effect on accommodation. J. Vis. 18(9), 1 (2018)CrossRefGoogle Scholar
  8. 8.
    Cottaris, N.P., Jiang, H., Ding, X., Wandell, B.A., Brainard, D.H.: A computational observer model of spatial contrast sensitivity: effects of wavefront-based optics, cone mosaic structure, and inference engine. bioRxiv (2018)Google Scholar
  9. 9.
    Curcio, C.A., et al.: Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. J. Comp. Neurol. 312(4), 610–24 (1991)CrossRefGoogle Scholar
  10. 10.
    Dorman, R., van Ee, R.: 50 years of stereoblindness: reconciliation of a continuum of disparity detectors with blindness for disparity in near or far depth. i-Perception 8(6), 204166951773854 (2017)Google Scholar
  11. 11.
    Golan, L., Shoham, S.: Speckle elimination using shift-averaging in high-rate holographic projection. Opt. Express 17(3), 1330–1339 (2009)CrossRefGoogle Scholar
  12. 12.
    Goodman, J.W.: Introduction to Fourier Optics, 2nd edn. McGraw-Hill (1996)Google Scholar
  13. 13.
    Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The lumigraph (1996)Google Scholar
  14. 14.
    Held, R.T., Cooper, E.A., Banks, M.S.: Blur and disparity are complementary cues to depth. Curr. Biol.: CB 22(5), 426–431 (2012)CrossRefGoogle Scholar
  15. 15.
    Hilaire, P.S.: Modulation transfer function and optimum sampling of holographic stereograms. Appl. Opt. 33(5), 768–774 (1994)CrossRefGoogle Scholar
  16. 16.
    Hoffman, D.M., Girshick, A.R., Akeley, K., Banks, M.S.: Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. J. Vis. 8(3), 33 (2008)CrossRefGoogle Scholar
  17. 17.
    Honda, T., et al.: Three-dimensional display technologies satisfying “super multiview condition”. In: Optics East (2001)Google Scholar
  18. 18.
    Hua, H.: Enabling focus cues in head-mounted displays. Proc. IEEE 105(5), 805–824 (2017)CrossRefGoogle Scholar
  19. 19.
    Hua, H., Javidi, B.: A 3D integral imaging optical see-through head-mounted display. Opt. Express 22(11), 13484–13491 (2014)CrossRefGoogle Scholar
  20. 20.
    Huang, F.C., Chen, K., Wetzstein, G.: The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues. ACM Trans. Graph. 34(4), 60:1–60:12 (2015)Google Scholar
  21. 21.
    Huang, H., Hua, H.: Systematic characterization and optimization of 3D light field displays. Opt. Express 25(16), 18508–18525 (2017)CrossRefGoogle Scholar
  22. 22.
    Huang, H., Hua, H.: Effects of ray position sampling on the visual responses of 3D light field displays. Opt. Express 27(7), 9343–9360 (2019)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Jang, C., Bang, K., Moon, S., Kim, J., Lee, S., Lee, B.: Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina. ACM Trans. Graph. (TOG) 36(6), 190 (2017)CrossRefGoogle Scholar
  24. 24.
    Kelly, D.H.: Motion and vision. II. Stabilized spatio-temporal threshold surface. J. Opt. Soc. Am. 69(10), 1340–1349 (1979)CrossRefGoogle Scholar
  25. 25.
    Konrad, R., Padmanaban, N., Molner, K., Cooper, E.A., Wetzstein, G.: Accommodation-invariant computational near-eye displays. ACM Trans. Graph. 36(4), 88:1–88:12 (2017)CrossRefGoogle Scholar
  26. 26.
    Lanman, D., Luebke, D.: Near-eye light field displays. ACM Trans. Graph. 32(6), 220:1–220:10 (2013)CrossRefGoogle Scholar
  27. 27.
    Lee, S., et al.: Foveated retinal optimization for see-through near-eye multi-layer displays. IEEE Access 6, 2170–2180 (2018)CrossRefGoogle Scholar
  28. 28.
    Legge, G.E.: A power law for contrast discrimination. Vis. Res. 21(4), 457–467 (1981)CrossRefGoogle Scholar
  29. 29.
    Levoy, M., Hanrahan, P.: Light field rendering. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 31–42. ACM (1996)Google Scholar
  30. 30.
    Liang, J., Williams, D.R.: Aberrations and retinal image quality of the normal human eye. J. Opt. Soc. Am. A 14(11), 2873–2883 (1997)CrossRefGoogle Scholar
  31. 31.
    Liu, M., Lu, C., Li, H., Liu, X.: Near eye light field display based on human visual features. Opt. Express 25(9), 9886–9900 (2017)CrossRefGoogle Scholar
  32. 32.
    Lucente, M.E.: Diffraction-specific Fringe Computation for Electro-holography. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, USA (1994)Google Scholar
  33. 33.
    Macleod, D.I.A., Williams, D.R., Makous, W.: A visual nonlinearity fed by single cones. Vis. Res. 32, 347–363 (1992)CrossRefGoogle Scholar
  34. 34.
    Maimone, A., Georgiou, A., Kollin, J.S.: Holographic near-eye displays for virtual and augmented reality. ACM Trans. Graph. 36(4), 85:1–85:16 (2017)CrossRefGoogle Scholar
  35. 35.
    Mäkinen, J., Sahin, E., Gotchev, A.: Analysis of accommodation cues in holographic stereograms. In: 2018–3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON), pp. 1–4, June 2018Google Scholar
  36. 36.
    Marcos, S., Moreno, E., Navarro, R.: The depth-of-field of the human eye from objective and subjective measurements. Vis. Res. 39(12), 2039–2049 (1999)CrossRefGoogle Scholar
  37. 37.
    McCrickerd, J.T., George, N.: Holographic stereogram from sequential component photographs. Appl. Phys. Lett. 12(1), 10–12 (1968)CrossRefGoogle Scholar
  38. 38.
    Nadenau, M.J., Reichel, J., Kunt, M.: Performance comparison of masking models based on a new psychovisual test method with natural scenery stimuli. Sig. Process. Image Commun. 17(10), 807–823 (2002)CrossRefGoogle Scholar
  39. 39.
    Navarro, R.: The optical design of the human eye: a critical review. J. Optom. 2, 3–18 (2009)CrossRefGoogle Scholar
  40. 40.
    Owens, D.A.: A comparison of accommodative responsiveness and contrast sensitivity for sinusoidal gratings. Vis. Res. 20(2), 159–167 (1980)CrossRefGoogle Scholar
  41. 41.
    Park, J.H.: Recent progress in computer-generated holography for three-dimensional scenes. J. Inf. Disp. 18(1), 1–12 (2017)CrossRefGoogle Scholar
  42. 42.
    Pelli, D.G., Bex, P.: Measuring contrast sensitivity. Vis. Res. 90, 10–14 (2013)CrossRefGoogle Scholar
  43. 43.
    Qin, Z., et al.: Image formation modeling and analysis of near-eye light field displays. J. Soc. Inf. Disp. 27, 238–250 (2019)CrossRefGoogle Scholar
  44. 44.
    Schor, C.M.: A dynamic model of cross-coupling between accommodation and convergence: simulations of step and frequency responses. Optom. Vis. Sci.: Off. Publ. Am. Acad. Optom. 69(4), 258–269 (1992)CrossRefGoogle Scholar
  45. 45.
    Seshadrinathan, K., et al.: Image quality assessment, Chapter 21. In: Bovik, A. (ed.) The Essential Guide to Image Processing, pp. 553–595. Academic Press, Boston (2009)CrossRefGoogle Scholar
  46. 46.
    Stern, A., Yitzhaky, Y., Javidi, B.: Perceivable light fields: matching the requirements between the human visual system and autostereoscopic 3-D displays. Proc. IEEE 102(10), 1571–1587 (2014)CrossRefGoogle Scholar
  47. 47.
    Strasburger, H., Rentschler, I., Jüttner, M.: Peripheral vision and pattern recognition: a review. J. Vis. 11(5), 13 (2011)CrossRefGoogle Scholar
  48. 48.
    Sun, F.C., Stark, L., Nguyen, A., Wong, J., Lakshminarayanan, V., Mueller, E.: Changes in accommodation with age: static and dynamic. Am. J. Optom. Physiol. Opt. 65(6), 492–498 (1988)CrossRefGoogle Scholar
  49. 49.
    Sun, Q., Huang, F.C., Kim, J., Wei, L.Y., Luebke, D., Kaufman, A.: Perceptually-guided foveation for light field displays. ACM Trans. Graph. 36(6), 192:1–192:13 (2017)CrossRefGoogle Scholar
  50. 50.
    Utsugi, T., Yamaguchi, M.: Speckle-suppression in hologram calculation using ray-sampling plane. Opt. Express 22(14), 17193–17206 (2014)CrossRefGoogle Scholar
  51. 51.
    Van Nes, F.L., Bouman, M.A.: Spatial modulation transfer in the human eye. J. Opt. Soc. Am. 57(3), 401–406 (1967)CrossRefGoogle Scholar
  52. 52.
    Wandell, B.: Foundations of Vision. Sinauer Associates (1995)Google Scholar
  53. 53.
    Waters, J.P.: Holographic image synthesis utilizing theoretical methods. Appl. Phys. Lett. 9(11), 405–407 (1966)CrossRefGoogle Scholar
  54. 54.
    Watson, A.B.: A formula for human retinal ganglion cell receptive field density as a function of visual field location. J. Vis. 14(7), 1–17 (2014)CrossRefGoogle Scholar
  55. 55.
    Williams, D., Sekiguchi, N., Brainard, D.: Color, contrast sensitivity, and the cone mosaic. Proc. Nat. Acad. Sci. U.S.A. 90(21), 9770–9777 (1993)CrossRefGoogle Scholar
  56. 56.
    Yamaguchi, M.: Light-field and holographic three-dimensional displays. J. Opt. Soc. Am. A 33(12), 2348–2364 (2016)CrossRefGoogle Scholar
  57. 57.
    Yamaguchi, M., Endoh, H., Honda, T., Ohyama, N.: High-quality recording of a full-parallax holographic stereogram with a digital diffuser. Opt. Lett. 19(2), 135–137 (1994)CrossRefGoogle Scholar
  58. 58.
    Yaraş, F., Kang, H., Onural, L.: Real-time phase-only color holographic video display system using led illumination. Appl. Opt. 48(34), H48–H53 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Information Technology and Communication SciencesTampere UniversityTampereFinland

Personalised recommendations