Advertisement

Physiological Roles of the von Willebrand Factor-Factor VIII Interaction

  • Klytaimnistra Kiouptsi
  • Christoph ReinhardtEmail author
Chapter
  • 74 Downloads
Part of the Subcellular Biochemistry book series (SCBI, volume 94)

Abstract

Von Willebrand factor (VWF) and coagulation factor VIII (FVIII) circulate as a complex in plasma and have a major role in the hemostatic system. VWF has a dual role in hemostasis. It promotes platelet adhesion by anchoring the platelets to the subendothelial matrix of damaged vessels and it protects FVIII from proteolytic degradation. Moreover, VWF is an acute phase protein that has multiple roles in vascular inflammation and is massively secreted from Weibel-Palade bodies upon endothelial cell activation. Activated FVIII on the other hand, together with coagulation factor IX forms the tenase complex, an essential feature of the propagation phase of coagulation on the surface of activated platelets. VWF deficiency, either quantitative or qualitative, results in von Willebrand disease (VWD), the most common bleeding disorder. The deficiency of FVIII is responsible for Hemophilia A, an X-linked bleeding disorder. Here, we provide an overview on the role of the VWF-FVIII interaction in vascular physiology.

Keywords

von Willebrand factor (VWF) Coagulation factor VIII (FVIII) Platelet Acute phase protein Hemophilia Hemostasis 

References

  1. Albanez S, Ogiwara K, Michels A, Hopman W, Grabell J, James P, Lillicrap D (2016) Aging and ABO blood type influence von Willebrand factor and factor VIII levels through interrelated mechanisms. J Thromb Haemost 14(5):953–963.  https://doi.org/10.1111/jth.13294CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alevriadou BR, Moake JL, Turner NA, Ruggeri ZM, Folie BJ, Phillips MD, Schreiber AB, Hrinda ME, McIntire LV (1993) Real-time analysis of shear-dependent thrombus formation and its blockade by inhibitors of von Willebrand factor binding to platelets. Blood 81(5):1263–1276CrossRefGoogle Scholar
  3. Andrews RK, Berndt MC (2013) The GPIb-IX-V complex. In: Michelson AD (ed) Platelets, 3rd edn. Elsevier, London, pp 195–213CrossRefGoogle Scholar
  4. Arneth B (2019) Coevolution of the coagulation and immune systems. Inflamm Res 68(2):117–123.  https://doi.org/10.1007/s00011-018-01210-yCrossRefPubMedGoogle Scholar
  5. Baaij M, van Galen KP, Urbanus RT, Nigten J, Eikenboom JH, Schutgens RE (2015) First report of inhibitory von Willebrand factor alloantibodies in type 2B von Willebrand disease. Br J Haematol 171(3):424–427.  https://doi.org/10.1111/bjh.13395CrossRefPubMedGoogle Scholar
  6. Babich V, Meli A, Knipe L, Dempster JE, Skehel P, Hannah MJ, Carter T (2008) Selective release of molecules from Weibel-Palade bodies during a lingering kiss. Blood 111(11):5282–5290.  https://doi.org/10.1182/blood-2007-09-113746CrossRefPubMedGoogle Scholar
  7. Baglia FA, Badellino KO, Li CQ, Lopez JA, Walsh PN (2002) Factor XI binding to the platelet glycoprotein Ib-IX-V complex promotes factor XI activation by thrombin. J Biol Chem 277(3):1662–1668.  https://doi.org/10.1074/jbc.M108319200CrossRefPubMedGoogle Scholar
  8. Bahou WF, Ginsburg D, Sikkink R, Litwiller R, Fass DN (1989) A monoclonal antibody to von Willebrand factor (vWF) inhibits factor VIII binding. Localization of its antigenic determinant to a nonadecapeptide at the amino terminus of the mature vWF polypeptide. J Clin Invest 84 (1):56–61.  https://doi.org/10.1172/jci114169
  9. Bajaj SP, Schmidt AE, Mathur A, Padmanabhan K, Zhong D, Mastri M, Fay PJ (2001) Factor IXa:factor VIIIa interaction. helix 330–338 of factor ixa interacts with residues 558-565 and spatially adjacent regions of the a2 subunit of factor VIIIa. J Biol Chem 276 (19):16302-16309.  https://doi.org/10.1074/jbc.m011680200
  10. Baker J, Griggs RK, Falati S, Poole AW (2004) GPIb potentiates GPVI-induced responses in human platelets. Platelets 15(4):207–214.  https://doi.org/10.1080/09537100410001701010CrossRefPubMedGoogle Scholar
  11. Batlle J, Lopez-Fernandez MF, Fraga EL, Trillo AR, Perez-Rodriguez MA (2009) Von Willebrand factor/factor VIII concentrates in the treatment of von Willebrand disease. Blood Coagul Fibrinolysis 20(2):89–100.  https://doi.org/10.1097/MBC.0b013e3283254570CrossRefPubMedGoogle Scholar
  12. Bennett JS, Vilaire G (1979) Exposure of platelet fibrinogen receptors by ADP and epinephrine. J Clin Invest 64(5):1393–1401.  https://doi.org/10.1172/JCI109597CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bledzka K, Pesho MM, Ma Y, Plow EE (2013) Integrin αIIbβ3. In: Michelson AD (ed) Platelets, 3rd edn. Elsevier, London, pp 233–248CrossRefGoogle Scholar
  14. Bohm M, Betz C, Miesbach W, Krause M, von Auer C, Geiger H, Scharrer I (2005) The course of ADAMTS-13 activity and inhibitor titre in the treatment of thrombotic thrombocytopenic purpura with plasma exchange and vincristine. Br J Haematol 129(5):644–652.  https://doi.org/10.1111/j.1365-2141.2005.05512.xCrossRefPubMedGoogle Scholar
  15. Bontempo FA, Lewis JH, Gorenc TJ, Spero JA, Ragni MV, Scott JP, Starzl TE (1987) Liver transplantation in hemophilia A. Blood 69(6):1721–1724CrossRefGoogle Scholar
  16. Bonthron D, Orr EC, Mitsock LM, Ginsburg D, Handin RI, Orkin SH (1986) Nucleotide sequence of pre-pro-von Willebrand factor cDNA. Nucleic Acids Res 14(17):7125–7127.  https://doi.org/10.1093/nar/14.17.7125CrossRefPubMedPubMedCentralGoogle Scholar
  17. Borchiellini A, Fijnvandraat K, ten Cate JW, Pajkrt D, van Deventer SJ, Pasterkamp G, Meijer-Huizinga F, Zwart-Huinink L, Voorberg J, van Mourik JA (1996) Quantitative analysis of von Willebrand factor propeptide release in vivo: effect of experimental endotoxemia and administration of 1-deamino-8-D-arginine vasopressin in humans. Blood 88(8):2951–2958CrossRefGoogle Scholar
  18. Borel-Derlon A, Federici AB, Roussel-Robert V, Goudemand J, Lee CA, Scharrer I, Rothschild C, Berntorp E, Henriet C, Tellier Z, Bridey F, Mannucci PM (2007) Treatment of severe von Willebrand disease with a high-purity von Willebrand factor concentrate (Wilfactin): a prospective study of 50 patients. J Thromb Haemost 5(6):1115–1124.  https://doi.org/10.1111/j.1538-7836.2007.02562.xCrossRefPubMedGoogle Scholar
  19. Bovenschen N, Rijken DC, Havekes LM, van Vlijmen BJ, Mertens K (2005) The B domain of coagulation factor VIII interacts with the asialoglycoprotein receptor. J Thromb Haemost 3(6):1257–1265.  https://doi.org/10.1111/j.1538-7836.2005.01389.xCrossRefPubMedGoogle Scholar
  20. Bowman M, Hopman WM, Rapson D, Lillicrap D, James P (2010) The prevalence of symptomatic von Willebrand disease in primary care practice. J Thromb Haemost 8(1):213–216.  https://doi.org/10.1111/j.1538-7836.2009.03661.xCrossRefGoogle Scholar
  21. Bradford HN, Pixley RA, Colman RW (2000) Human factor XII binding to the glycoprotein Ib-IX-V complex inhibits thrombin-induced platelet aggregation. J Biol Chem 275(30):22756–22763.  https://doi.org/10.1074/jbc.M002591200CrossRefPubMedGoogle Scholar
  22. Brehelin M, Zachary D, Hoffmann JA (1978) A comparative ultrastructural study of blood cells from nine insect orders. Cell Tissue Res 195(1):45–57.  https://doi.org/10.1007/bf00233676CrossRefPubMedGoogle Scholar
  23. Brehm MA (2017) Von Willebrand factor processing. Hamostaseologie 37(1):59–72.  https://doi.org/10.5482/HAMO-16-06-0018CrossRefPubMedGoogle Scholar
  24. Budde U, Metzner HJ, Muller HG (2006) Comparative analysis and classification of von Willebrand factor/factor VIII concentrates: impact on treatment of patients with von Willebrand disease. Semin Thromb Hemost 32(6):626–635.  https://doi.org/10.1055/s-2006-949668CrossRefPubMedGoogle Scholar
  25. Canis K, McKinnon TA, Nowak A, Panico M, Morris HR, Laffan M, Dell A (2010) The plasma von Willebrand factor O-glycome comprises a surprising variety of structures including ABH antigens and disialosyl motifs. J Thromb Haemost 8(1):137–145.  https://doi.org/10.1111/j.1538-7836.2009.03665.xCrossRefPubMedGoogle Scholar
  26. Canis K, McKinnon TA, Nowak A, Haslam SM, Panico M, Morris HR, Laffan MA, Dell A (2012) Mapping the N-glycome of human von Willebrand factor. Biochem J 447(2):217–228.  https://doi.org/10.1042/BJ20120810CrossRefPubMedGoogle Scholar
  27. Casari C, Du V, Wu YP, Kauskot A, de Groot PG, Christophe OD, Denis CV, de Laat B, Lenting PJ (2013a) Accelerated uptake of VWF/platelet complexes in macrophages contributes to VWD type 2B-associated thrombocytopenia. Blood 122(16):2893–2902.  https://doi.org/10.1182/blood-2013-03-493312CrossRefPubMedGoogle Scholar
  28. Casari C, Lenting PJ, Wohner N, Christophe OD, Denis CV (2013b) Clearance of von Willebrand factor. J Thromb Haemost 11(Suppl 1):202–211.  https://doi.org/10.1111/jth.12226CrossRefGoogle Scholar
  29. Castro-Nunez L, Dienava-Verdoold I, Herczenik E, Mertens K, Meijer AB (2012) Shear stress is required for the endocytic uptake of the factor VIII-von Willebrand factor complex by macrophages. J Thromb Haemost 10(9):1929–1937.  https://doi.org/10.1111/j.1538-7836.2012.04860.xCrossRefPubMedGoogle Scholar
  30. Chauhan AK, Kisucka J, Lamb CB, Bergmeier W, Wagner DD (2007) von Willebrand factor and factor VIII are independently required to form stable occlusive thrombi in injured veins. Blood 109(6):2424–2429.  https://doi.org/10.1182/blood-2006-06-028241CrossRefPubMedPubMedCentralGoogle Scholar
  31. Chen J, Chung DW (2018) Inflammation, von Willebrand factor, and ADAMTS13. Blood 132(2):141–147.  https://doi.org/10.1182/blood-2018-02-769000CrossRefPubMedPubMedCentralGoogle Scholar
  32. Coppola R, Mari D, Lattuada A, Franceschi C (2003) Von Willebrand factor in Italian centenarians. Haematologica 88(1):39–43PubMedGoogle Scholar
  33. Dagil L, Troelsen KS, Bolt G, Thim L, Wu B, Zhao X, Tuddenham EGD, Nielsen TE, Tanner DA, Faber JH, Breinholt J, Rasmussen JE, Hansen DF (2019) Interaction Between the a3 Region of Factor VIII and the TIL’E’ Domains of the von Willebrand Factor. Biophys J 117(3):479–489.  https://doi.org/10.1016/j.bpj.2019.07.007CrossRefPubMedPubMedCentralGoogle Scholar
  34. Dasgupta S, Repesse Y, Bayry J, Navarrete AM, Wootla B, Delignat S, Irinopoulou T, Kamate C, Saint-Remy JM, Jacquemin M, Lenting PJ, Borel-Derlon A, Kaveri SV, Lacroix-Desmazes S (2007) VWF protects FVIII from endocytosis by dendritic cells and subsequent presentation to immune effectors. Blood 109(2):610–612.  https://doi.org/10.1182/blood-2006-05-022756CrossRefPubMedGoogle Scholar
  35. De Marco L, Girolami A, Zimmerman TS, Ruggeri ZM (1986) von Willebrand factor interaction with the glycoprotein IIb/IIa complex. Its role in platelet function as demonstrated in patients with congenital afibrinogenemia. J Clin Invest 77 (4):1272–1277.  https://doi.org/10.1172/jci112430
  36. Denis C, Methia N, Frenette PS, Rayburn H, Ullman-Cullere M, Hynes RO, Wagner DD (1998) A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis. Proc Natl Acad Sci U S A 95(16):9524–9529.  https://doi.org/10.1073/pnas.95.16.9524CrossRefPubMedPubMedCentralGoogle Scholar
  37. Denorme F, Kraft P, Pareyn I, Drechsler C, Deckmyn H, Vanhoorelbeke K, Kleinschnitz C, De Meyer SF (2017) Reduced ADAMTS13 levels in patients with acute and chronic cerebrovascular disease. PLoS ONE 12(6):e0179258.  https://doi.org/10.1371/journal.pone.0179258CrossRefPubMedPubMedCentralGoogle Scholar
  38. Dhanesha N, Prakash P, Doddapattar P, Khanna I, Pollpeter MJ, Nayak MK, Staber JM, Chauhan AK (2016) Endothelial Cell-Derived von Willebrand Factor Is the Major Determinant That Mediates von Willebrand Factor-Dependent Acute Ischemic Stroke by Promoting Postischemic Thrombo-Inflammation. Arterioscler Thromb Vasc Biol 36(9):1829–1837.  https://doi.org/10.1161/ATVBAHA.116.307660CrossRefPubMedPubMedCentralGoogle Scholar
  39. Do H, Healey JF, Waller EK, Lollar P (1999) Expression of factor VIII by murine liver sinusoidal endothelial cells. J Biol Chem 274(28):19587–19592.  https://doi.org/10.1074/jbc.274.28.19587CrossRefPubMedGoogle Scholar
  40. Dong JF, Moake JL, Nolasco L, Bernardo A, Arceneaux W, Shrimpton CN, Schade AJ, McIntire LV, Fujikawa K, Lopez JA (2002) ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions. Blood 100(12):4033–4039.  https://doi.org/10.1182/blood-2002-05-1401CrossRefPubMedGoogle Scholar
  41. Durrant TN, van den Bosch MT, Hers I (2017) Integrin alphaIIbbeta3 outside-in signaling. Blood 130(14):1607–1619.  https://doi.org/10.1182/blood-2017-03-773614CrossRefPubMedPubMedCentralGoogle Scholar
  42. Ellies LG, Ditto D, Levy GG, Wahrenbrock M, Ginsburg D, Varki A, Le DT, Marth JD (2002) Sialyltransferase ST3Gal-IV operates as a dominant modifier of hemostasis by concealing asialoglycoprotein receptor ligands. Proc Natl Acad Sci U S A 99(15):10042–10047.  https://doi.org/10.1073/pnas.142005099CrossRefPubMedPubMedCentralGoogle Scholar
  43. Everett LA, Cleuren AC, Khoriaty RN, Ginsburg D (2014) Murine coagulation factor VIII is synthesized in endothelial cells. Blood 123(24):3697–3705.  https://doi.org/10.1182/blood-2014-02-554501CrossRefPubMedPubMedCentralGoogle Scholar
  44. Fahs SA, Hille MT, Shi Q, Weiler H, Montgomery RR (2014) A conditional knockout mouse model reveals endothelial cells as the principal and possibly exclusive source of plasma factor VIII. Blood 123(24):3706–3713.  https://doi.org/10.1182/blood-2014-02-555151CrossRefPubMedPubMedCentralGoogle Scholar
  45. Federici AB (2008) The use of desmopressin in von Willebrand disease: the experience of the first 30 years (1977-2007). Haemophilia 14(Suppl 1):5–14.  https://doi.org/10.1111/j.1365-2516.2007.01610.xCrossRefPubMedGoogle Scholar
  46. Federici AB, Bader R, Pagani S, Colibretti ML, De Marco L, Mannucci PM (1989) Binding of von Willebrand factor to glycoproteins Ib and IIb/IIIa complex: affinity is related to multimeric size. Br J Haematol 73(1):93–99.  https://doi.org/10.1111/j.1365-2141.1989.tb00226.xCrossRefPubMedGoogle Scholar
  47. Federici AB, Mazurier C, Berntorp E, Lee CA, Scharrer I, Goudemand J, Lethagen S, Nitu I, Ludwig G, Hilbert L, Mannucci PM (2004) Biologic response to desmopressin in patients with severe type 1 and type 2 von Willebrand disease: results of a multicenter European study. Blood 103(6):2032–2038.  https://doi.org/10.1182/blood-2003-06-2072CrossRefPubMedGoogle Scholar
  48. Fernandez MF, Ginsberg MH, Ruggeri ZM, Batlle FJ, Zimmerman TS (1982) Multimeric structure of platelet factor VIII/von Willebrand factor: the presence of larger multimers and their reassociation with thrombin-stimulated platelets. Blood 60(5):1132–1138CrossRefGoogle Scholar
  49. Ferraro F, Kriston-Vizi J, Metcalf DJ, Martin-Martin B, Freeman J, Burden JJ, Westmoreland D, Dyer CE, Knight AE, Ketteler R, Cutler DF (2014) A two-tier Golgi-based control of organelle size underpins the functional plasticity of endothelial cells. Dev Cell 29(3):292–304.  https://doi.org/10.1016/j.devcel.2014.03.021CrossRefPubMedPubMedCentralGoogle Scholar
  50. Floyd CN, Ferro A (2012) The platelet fibrinogen receptor: from megakaryocyte to the mortuary. JRSM Cardiovasc Dis 1 (2).  https://doi.org/10.1258/cvd.2012.012007
  51. Foster PA, Fulcher CA, Marti T, Titani K, Zimmerman TS (1987) A major factor VIII binding domain resides within the amino-terminal 272 amino acid residues of von Willebrand factor. J Biol Chem 262(18):8443–8446PubMedGoogle Scholar
  52. Foster PA, Fulcher CA, Houghten RA, Zimmerman TS (1988) An immunogenic region within residues Val1670-Glu1684 of the factor VIII light chain induces antibodies which inhibit binding of factor VIII to von Willebrand factor. J Biol Chem 263(11):5230–5234PubMedGoogle Scholar
  53. Franchini M (2010) Plasma-derived versus recombinant Factor VIII concentrates for the treatment of haemophilia A: recombinant is better. Blood Transfus 8(4):292–296.  https://doi.org/10.2450/2010.0067-10CrossRefPubMedPubMedCentralGoogle Scholar
  54. Frankel DS, Meigs JB, Massaro JM, Wilson PW, O’Donnell CJ, D’Agostino RB, Tofler GH (2008) Von Willebrand factor, type 2 diabetes mellitus, and risk of cardiovascular disease: the framingham offspring study. Circulation 118(24):2533–2539.  https://doi.org/10.1161/CIRCULATIONAHA.108.792986CrossRefPubMedPubMedCentralGoogle Scholar
  55. Fressinaud E, Girma JP, Sadler JE, Baumgartner HR, Meyer D (1990) Synthetic RGDS-containing peptides of von Willebrand factor inhibit platelet adhesion to collagen. Thromb Haemost 64(4):589–593CrossRefGoogle Scholar
  56. Fujimura Y, Holland LZ, Ruggeri ZM, Zimmerman TS (1987) The von willebrand factor domain-mediating botrocetin-induced binding to glycoprotein IB lies between Val449 and Lys728. Blood 70(4):985–988CrossRefGoogle Scholar
  57. Furlan M, Lammle B (1999) von Willebrand factor in thrombotic thrombocytopenic purpura. Thromb Haemost 82(2):592–600PubMedGoogle Scholar
  58. Gharagozlou S, Sharifian RA, Khoshnoodi J, Karimi K, Milani M, Okita DK, Shokri F, Conti-Fine BM (2009) Epitope specificity of anti-factor VIII antibodies from inhibitor positive acquired and congenital haemophilia A patients using synthetic peptides spanning A and C domains. Thromb Haemost 101(5):834–839CrossRefGoogle Scholar
  59. Gibbins JM, Okuma M, Farndale R, Barnes M, Watson SP (1997) Glycoprotein VI is the collagen receptor in platelets which underlies tyrosine phosphorylation of the Fc receptor gamma-chain. FEBS Lett 413(2):255–259.  https://doi.org/10.1016/s0014-5793(97)00926-5CrossRefPubMedGoogle Scholar
  60. Giblin JP, Hewlett LJ, Hannah MJ (2008) Basal secretion of von Willebrand factor from human endothelial cells. Blood 112(4):957–964.  https://doi.org/10.1182/blood-2007-12-130740CrossRefPubMedGoogle Scholar
  61. Giddings JC, Brookes LR, Piovella F, Bloom AL (1982) Immunohistological comparison of platelet factor 4 (PF4), fibronectin (Fn) and factor VIII related antigen (VIIIR:Ag) in human platelet granules. Br J Haematol 52(1):79–88.  https://doi.org/10.1111/j.1365-2141.1982.tb03863.xCrossRefPubMedGoogle Scholar
  62. Ginsburg D, Handin RI, Bonthron DT, Donlon TA, Bruns GA, Latt SA, Orkin SH (1985) Human von Willebrand factor (vWF): isolation of complementary DNA (cDNA) clones and chromosomal localization. Science 228(4706):1401–1406.  https://doi.org/10.1126/science.3874428CrossRefPubMedGoogle Scholar
  63. Gitschier J, Wood WI, Goralka TM, Wion KL, Chen EY, Eaton DH, Vehar GA, Capon DJ, Lawn RM (1984) Characterization of the human factor VIII gene. Nature 312(5992):326–330.  https://doi.org/10.1038/312326a0CrossRefPubMedGoogle Scholar
  64. Goto S, Ikeda Y, Saldivar E, Ruggeri ZM (1998) Distinct mechanisms of platelet aggregation as a consequence of different shearing flow conditions. J Clin Invest 101(2):479–486.  https://doi.org/10.1172/JCI973CrossRefPubMedPubMedCentralGoogle Scholar
  65. Goudemand J, Mazurier C, Marey A, Caron C, Coupez B, Mizon P, Goudemand M (1992) Clinical and biological evaluation in von Willebrand’s disease of a von Willebrand factor concentrate with low factor VIII activity. Br J Haematol 80(2):214–221.  https://doi.org/10.1111/j.1365-2141.1992.tb08903.xCrossRefPubMedGoogle Scholar
  66. Grant KR (2015) Fish Hematology and Associated Disorders. Clin Lab Med 35(3):681–701.  https://doi.org/10.1016/j.cll.2015.05.015CrossRefPubMedGoogle Scholar
  67. Grassle S, Huck V, Pappelbaum KI, Gorzelanny C, Aponte-Santamaria C, Baldauf C, Grater F, Schneppenheim R, Obser T, Schneider SW (2014) von Willebrand factor directly interacts with DNA from neutrophil extracellular traps. Arterioscler Thromb Vasc Biol 34(7):1382–1389.  https://doi.org/10.1161/ATVBAHA.113.303016CrossRefPubMedGoogle Scholar
  68. Graw J, Brackmann HH, Oldenburg J, Schneppenheim R, Spannagl M, Schwaab R (2005) Haemophilia A: from mutation analysis to new therapies. Nat Rev Genet 6(6):488–501.  https://doi.org/10.1038/nrg1617CrossRefPubMedGoogle Scholar
  69. Grewal PK, Uchiyama S, Ditto D, Varki N, Le DT, Nizet V, Marth JD (2008) The Ashwell receptor mitigates the lethal coagulopathy of sepsis. Nat Med 14(6):648–655.  https://doi.org/10.1038/nm1760CrossRefPubMedPubMedCentralGoogle Scholar
  70. Groot E, de Groot PG, Fijnheer R, Lenting PJ (2007) The presence of active von Willebrand factor under various pathological conditions. Curr Opin Hematol 14(3):284–289.  https://doi.org/10.1097/MOH.0b013e3280dce531CrossRefPubMedGoogle Scholar
  71. Guan J, Guillot PV, Aird WC (1999) Characterization of the mouse von Willebrand factor promoter. Blood 94(10):3405–3412CrossRefGoogle Scholar
  72. Haberichter SL, Merricks EP, Fahs SA, Christopherson PA, Nichols TC, Montgomery RR (2005) Re-establishment of VWF-dependent Weibel-Palade bodies in VWD endothelial cells. Blood 105(1):145–152.  https://doi.org/10.1182/blood-2004-02-0464CrossRefPubMedGoogle Scholar
  73. Haberichter SL, Shi Q, Montgomery RR (2006) Regulated release of VWF and FVIII and the biologic implications. Pediatr Blood Cancer 46(5):547–553.  https://doi.org/10.1002/pbc.20658CrossRefPubMedGoogle Scholar
  74. Hillgruber C, Steingraber AK, Poppelmann B, Denis CV, Ware J, Vestweber D, Nieswandt B, Schneider SW, Goerge T (2014) Blocking von Willebrand factor for treatment of cutaneous inflammation. J Invest Dermatol 134(1):77–86.  https://doi.org/10.1038/jid.2013.292CrossRefPubMedGoogle Scholar
  75. Hollestelle MJ, Thinnes T, Crain K, Stiko A, Kruijt JK, van Berkel TJ, Loskutoff DJ, van Mourik JA (2001) Tissue distribution of factor VIII gene expression in vivo–a closer look. Thromb Haemost 86(3):855–861CrossRefGoogle Scholar
  76. Hollestelle MJ, Donkor C, Mantey EA, Chakravorty SJ, Craig A, Akoto AO, O’Donnell J, van Mourik JA, Bunn J (2006) von Willebrand factor propeptide in malaria: evidence of acute endothelial cell activation. Br J Haematol 133(5):562–569.  https://doi.org/10.1111/j.1365-2141.2006.06067.xCrossRefPubMedGoogle Scholar
  77. Huang J, Roth R, Heuser JE, Sadler JE (2009) Integrin alpha(v)beta(3) on human endothelial cells binds von Willebrand factor strings under fluid shear stress. Blood 113(7):1589–1597.  https://doi.org/10.1182/blood-2008-05-158584CrossRefPubMedPubMedCentralGoogle Scholar
  78. Hyseni A, Kemperman H, de Lange DW, Kesecioglu J, de Groot PG, Roest M (2014) Active von Willebrand factor predicts 28-day mortality in patients with systemic inflammatory response syndrome. Blood 123(14):2153–2156.  https://doi.org/10.1182/blood-2013-08-508093CrossRefPubMedGoogle Scholar
  79. Ishihara J, Ishihara A, Starke RD, Peghaire CR, Smith KE, McKinnon TAJ, Tabata Y, Sasaki K, White MJV, Fukunaga K, Laffan MA, Lutolf MP, Randi AM, Hubbell JA (2019) The heparin binding domain of von Willebrand factor binds to growth factors and promotes angiogenesis in wound healing. Blood 133(24):2559–2569.  https://doi.org/10.1182/blood.2019000510CrossRefPubMedGoogle Scholar
  80. Jackel S, Kiouptsi K, Lillich M, Hendrikx T, Khandagale A, Kollar B, Hormann N, Reiss C, Subramaniam S, Wilms E, Ebner K, Bruhl MV, Rausch P, Baines JF, Haberichter S, Lammle B, Binder CJ, Jurk K, Ruggeri ZM, Massberg S, Walter U, Ruf W, Reinhardt C (2017) Gut microbiota regulate hepatic von Willebrand factor synthesis and arterial thrombus formation via Toll-like receptor-2. Blood 130(4):542–553.  https://doi.org/10.1182/blood-2016-11-754416CrossRefPubMedGoogle Scholar
  81. Jacquemin M, Neyrinck A, Hermanns MI, Lavend’homme R, Rega F, Saint-Remy JM, Peerlinck K, Van Raemdonck D, Kirkpatrick CJ (2006) FVIII production by human lung microvascular endothelial cells. Blood 108(2):515–517.  https://doi.org/10.1182/blood-2005-11-4571CrossRefPubMedGoogle Scholar
  82. James PD, Lillicrap D, Mannucci PM (2013) Alloantibodies in von Willebrand disease. Blood 122(5):636–640.  https://doi.org/10.1182/blood-2012-10-462085CrossRefPubMedPubMedCentralGoogle Scholar
  83. Jorieux S, Gaucher C, Pietu G, Cherel G, Meyer D, Mazurier C (1994) Fine epitope mapping of monoclonal antibodies to the NH2-terminal part of von Willebrand factor (vWF) by using recombinant and synthetic peptides: interest for the localization of the factor VIII binding domain. Br J Haematol 87(1):113–118.  https://doi.org/10.1111/j.1365-2141.1994.tb04879.xCrossRefPubMedGoogle Scholar
  84. Joseph K, Nakazawa Y, Bahou WF, Ghebrehiwet B, Kaplan AP (1999) Platelet glycoprotein Ib: a zinc-dependent binding protein for the heavy chain of high-molecular-weight kininogen. Mol Med 5(8):555–563CrossRefGoogle Scholar
  85. Jurk K, Clemetson KJ, de Groot PG, Brodde MF, Steiner M, Savion N, Varon D, Sixma JJ, Van Aken H, Kehrel BE (2003) Thrombospondin-1 mediates platelet adhesion at high shear via glycoprotein Ib (GPIb): an alternative/backup mechanism to von Willebrand factor. FASEB J 17(11):1490–1492.  https://doi.org/10.1096/fj.02-0830fjeCrossRefPubMedGoogle Scholar
  86. Kalagara T, Moutsis T, Yang Y, Pappelbaum KI, Farken A, Cladder-Micus L, Vidal YSS, John A, Bauer AT, Moerschbacher BM, Schneider SW, Gorzelanny C (2018) The endothelial glycocalyx anchors von Willebrand factor fibers to the vascular endothelium. Blood Adv 2(18):2347–2357.  https://doi.org/10.1182/bloodadvances.2017013995CrossRefPubMedPubMedCentralGoogle Scholar
  87. Kallas A, Talpsep T (2001) von Willebrand factor in factor VIII concentrates protects against neutralization by factor VIII antibodies of haemophilia A patients. Haemophilia 7(4):375–380.  https://doi.org/10.1046/j.1365-2516.2001.00530.xCrossRefPubMedGoogle Scholar
  88. Kamphuisen PW, Eikenboom JC, Rosendaal FR, Koster T, Blann AD, Vos HL, Bertina RM (2001) High factor VIII antigen levels increase the risk of venous thrombosis but are not associated with polymorphisms in the von Willebrand factor and factor VIII gene. Br J Haematol 115(1):156–158.  https://doi.org/10.1046/j.1365-2141.2001.03089.xCrossRefPubMedGoogle Scholar
  89. Kaufman RJ, Wasley LC, Dorner AJ (1988) Synthesis, processing, and secretion of recombinant human factor VIII expressed in mammalian cells. J Biol Chem 263(13):6352–6362PubMedGoogle Scholar
  90. Kawai Y, Montgomery RR (1987) Endothelial cell processing of von Willebrand proteins. Ann N Y Acad Sci 509:60–70.  https://doi.org/10.1111/j.1749-6632.1987.tb30984.xCrossRefPubMedGoogle Scholar
  91. Kiouptsi K, Grill A, Mann A, Dohrmann M, Lillich M, Jackel S, Malinarich F, Formes H, Manukyan D, Subramaniam S, Khandagale A, Karwot C, Thal SC, Bosmann M, Scharrer I, Jurk K, Reinhardt C (2017) Mice deficient in the anti-haemophilic coagulation factor VIII show increased von Willebrand factor plasma levels. PLoS ONE 12(8):e0183590.  https://doi.org/10.1371/journal.pone.0183590CrossRefPubMedPubMedCentralGoogle Scholar
  92. Koster T, Blann AD, Briet E, Vandenbroucke JP, Rosendaal FR (1995) Role of clotting factor VIII in effect of von Willebrand factor on occurrence of deep-vein thrombosis. Lancet 345(8943):152–155.  https://doi.org/10.1016/s0140-6736(95)90166-3CrossRefGoogle Scholar
  93. Kowalska MA, Tuszynski GP (1993) Interaction of thrombospondin with platelet glycoproteins GPIa-IIa and GPIIb-IIIa. Biochem J 295(Pt 3):725–730.  https://doi.org/10.1042/bj2950725CrossRefPubMedPubMedCentralGoogle Scholar
  94. Lai J, Hough C, Tarrant J, Lillicrap D (2017) Biological considerations of plasma-derived and recombinant factor VIII immunogenicity. Blood 129(24):3147–3154.  https://doi.org/10.1182/blood-2016-11-750885CrossRefPubMedGoogle Scholar
  95. Lapan KA, Fay PJ (1997) Localization of a factor X interactive site in the A1 subunit of factor VIIIa. J Biol Chem 272(4):2082–2088.  https://doi.org/10.1074/jbc.272.4.2082CrossRefPubMedGoogle Scholar
  96. Leebeek FW, Eikenboom JC (2016) Von Willebrand’s Disease. N Engl J Med 375(21):2067–2080.  https://doi.org/10.1056/NEJMra1601561CrossRefPubMedGoogle Scholar
  97. Legaz ME, Schmer G, Counts RB, Davie EW (1973) Isolation and characterization of human Factor VIII (antihemophilic factor). J Biol Chem 248(11):3946–3955PubMedGoogle Scholar
  98. Lenting PJ, van de Loo JW, Donath MJ, van Mourik JA, Mertens K (1996) The sequence Glu 1811-Lys1818 of human blood coagulation factor VIII comprises a binding site for activated factor IX. J Biol Chem 271(4):1935–1940.  https://doi.org/10.1074/jbc.271.4.1935CrossRefPubMedGoogle Scholar
  99. Lenting PJ, Neels JG, van den Berg BM, Clijsters PP, Meijerman DW, Pannekoek H, van Mourik JA, Mertens K, van Zonneveld AJ (1999) The light chain of factor VIII comprises a binding site for low density lipoprotein receptor-related protein. J Biol Chem 274(34):23734–23739.  https://doi.org/10.1074/jbc.274.34.23734CrossRefPubMedGoogle Scholar
  100. Lenting PJ, Christophe OD, Denis CV (2015) von Willebrand factor biosynthesis, secretion, and clearance: connecting the far ends. Blood 125(13):2019–2028.  https://doi.org/10.1182/blood-2014-06-528406CrossRefPubMedGoogle Scholar
  101. Lethagen S, Carlson M, Hillarp A (2004) A comparative in vitro evaluation of six von Willebrand factor concentrates. Haemophilia 10(3):243–249.  https://doi.org/10.1111/j.1365-2516.2004.00893.xCrossRefPubMedGoogle Scholar
  102. Levy GG, Nichols WC, Lian EC, Foroud T, McClintick JN, McGee BM, Yang AY, Siemieniak DR, Stark KR, Gruppo R, Sarode R, Shurin SB, Chandrasekaran V, Stabler SP, Sabio H, Bouhassira EE, Upshaw JD Jr, Ginsburg D, Tsai HM (2001) Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 413(6855):488–494.  https://doi.org/10.1038/35097008CrossRefPubMedGoogle Scholar
  103. Leyte A, van Schijndel HB, Niehrs C, Huttner WB, Verbeet MP, Mertens K, van Mourik JA (1991) Sulfation of Tyr1680 of human blood coagulation factor VIII is essential for the interaction of factor VIII with von Willebrand factor. J Biol Chem 266(2):740–746PubMedGoogle Scholar
  104. Lippok S, Kolsek K, Lof A, Eggert D, Vanderlinden W, Muller JP, Konig G, Obser T, Rohrs K, Schneppenheim S, Budde U, Baldauf C, Aponte-Santamaria C, Grater F, Schneppenheim R, Radler JO, Brehm MA (2016) von Willebrand factor is dimerized by protein disulfide isomerase. Blood 127(9):1183–1191.  https://doi.org/10.1182/blood-2015-04-641902CrossRefPubMedGoogle Scholar
  105. Liu ML, Shen BW, Nakaya S, Pratt KP, Fujikawa K, Davie EW, Stoddard BL, Thompson AR (2000) Hemophilic factor VIII C1- and C2-domain missense mutations and their modeling to the 1.5-angstrom human C2-domain crystal structure. Blood 96 (3):979–987Google Scholar
  106. Lollar P, Hill-Eubanks DC, Parker CG (1988) Association of the factor VIII light chain with von Willebrand factor. J Biol Chem 263(21):10451–10455PubMedGoogle Scholar
  107. Lynch DC, Zimmerman TS, Collins CJ, Brown M, Morin MJ, Ling EH, Livingston DM (1985) Molecular cloning of cDNA for human von Willebrand factor: authentication by a new method. Cell 41(1):49–56.  https://doi.org/10.1016/0092-8674(85)90060-1CrossRefPubMedGoogle Scholar
  108. Mannucci PM, Canciani MT, Rota L, Donovan BS (1981) Response of factor VIII/von Willebrand factor to DDAVP in healthy subjects and patients with haemophilia A and von Willebrand’s disease. Br J Haematol 47(2):283–293.  https://doi.org/10.1111/j.1365-2141.1981.tb02789.xCrossRefPubMedGoogle Scholar
  109. Mannucci PM, Kempton C, Millar C, Romond E, Shapiro A, Birschmann I, Ragni MV, Gill JC, Yee TT, Klamroth R, Wong WY, Chapman M, Engl W, Turecek PL, Suiter TM, Ewenstein BM (2013) Pharmacokinetics and safety of a novel recombinant human von Willebrand factor manufactured with a plasma-free method: a prospective clinical trial. Blood 122(5):648–657.  https://doi.org/10.1182/blood-2013-01-479527CrossRefPubMedPubMedCentralGoogle Scholar
  110. Marchioro TL, Hougie C, Ragde H, Epstein RB, Thomas ED (1969) Hemophilia: role of organ homografts. Science 163(3863):188–190.  https://doi.org/10.1126/science.163.3863.188CrossRefPubMedGoogle Scholar
  111. Marti T, Rosselet SJ, Titani K, Walsh KA (1987) Identification of disulfide-bridged substructures within human von Willebrand factor. Biochemistry 26(25):8099–8109.  https://doi.org/10.1021/bi00399a013CrossRefPubMedGoogle Scholar
  112. Marx I, Christophe OD, Lenting PJ, Rupin A, Vallez MO, Verbeuren TJ, Denis CV (2008) Altered thrombus formation in von Willebrand factor-deficient mice expressing von Willebrand factor variants with defective binding to collagen or GPIIbIIIa. Blood 112(3):603–609.  https://doi.org/10.1182/blood-2008-02-142943CrossRefPubMedGoogle Scholar
  113. Matsui T, Titani K, Mizuochi T (1992) Structures of the asparagine-linked oligosaccharide chains of human von Willebrand factor. Occurrence of blood group A, B, and H(O) structures. J Biol Chem 267 (13):8723–8731Google Scholar
  114. Mayadas TN, Wagner DD (1989) In vitro multimerization of von Willebrand factor is triggered by low pH. Importance of the propolypeptide and free sulfhydryls. J Biol Chem 264 (23):13497–13503Google Scholar
  115. McGrath RT, van den Biggelaar M, Byrne B, O’Sullivan JM, Rawley O, O’Kennedy R, Voorberg J, Preston RJ, O’Donnell JS (2013) Altered glycosylation of platelet-derived von Willebrand factor confers resistance to ADAMTS13 proteolysis. Blood 122(25):4107–4110.  https://doi.org/10.1182/blood-2013-04-496851CrossRefPubMedGoogle Scholar
  116. Methia N, Andre P, Denis CV, Economopoulos M, Wagner DD (2001) Localized reduction of atherosclerosis in von Willebrand factor-deficient mice. Blood 98(5):1424–1428.  https://doi.org/10.1182/blood.v98.5.1424CrossRefPubMedGoogle Scholar
  117. Mohri H, Ohkubo T (1991) How vitronectin binds to activated glycoprotein IIb-IIIa complex and its function in platelet aggregation. Am J Clin Pathol 96(5):605–609.  https://doi.org/10.1093/ajcp/96.5.605CrossRefPubMedGoogle Scholar
  118. Montgomery RR, Gill JC (2000) Interactions between von Willebrand factor and Factor VIII: where did they first meet. J Pediatr Hematol Oncol 22(3):269–275.  https://doi.org/10.1097/00043426-200005000-00017CrossRefPubMedGoogle Scholar
  119. Moreau A, Lacroix-Desmazes S, Stieltjes N, Saenko E, Kaveri SV, D’Oiron R, Sultan Y, Scandella D, Kazatchkine MD (2000) Antibodies to the FVIII light chain that neutralize FVIII procoagulant activity are present in plasma of nonresponder patients with severe hemophilia A and in normal polyclonal human IgG. Blood 95(11):3435–3441CrossRefGoogle Scholar
  120. Muntean W, Leschnik B (1989) Factor VIII influences binding of factor IX and factor X to intact human platelets. Thromb Res 55(5):537–548.  https://doi.org/10.1016/0049-3848(89)90386-1CrossRefPubMedGoogle Scholar
  121. Nesheim M, Pittman DD, Giles AR, Fass DN, Wang JH, Slonosky D, Kaufman RJ (1991) The effect of plasma von Willebrand factor on the binding of human factor VIII to thrombin-activated human platelets. J Biol Chem 266(27):17815–17820PubMedGoogle Scholar
  122. Nogami K, Shima M, Hosokawa K, Suzuki T, Koide T, Saenko EL, Scandella D, Shibata M, Kamisue S, Tanaka I, Yoshioka A (1999) Role of factor VIII C2 domain in factor VIII binding to factor Xa. J Biol Chem 274(43):31000–31007.  https://doi.org/10.1074/jbc.274.43.31000CrossRefPubMedGoogle Scholar
  123. Nogami K, Shima M, Hosokawa K, Nagata M, Koide T, Saenko EL, Tanaka I, Shibata M, Yoshioka A (2000) Factor VIII C2 domain contains the thrombin-binding site responsible for thrombin-catalyzed cleavage at Arg1689. J Biol Chem 275(33):25774–25780.  https://doi.org/10.1074/jbc.M002007200CrossRefPubMedGoogle Scholar
  124. O’Sullivan JM, Preston RJS, Robson T, O’Donnell JS (2018) Emerging Roles for von Willebrand Factor in Cancer Cell Biology. Semin Thromb Hemost 44(2):159–166.  https://doi.org/10.1055/s-0037-1607352CrossRefPubMedGoogle Scholar
  125. Pan J, Dinh TT, Rajaraman A, Lee M, Scholz A, Czupalla CJ, Kiefel H, Zhu L, Xia L, Morser J, Jiang H, Santambrogio L, Butcher EC (2016) Patterns of expression of factor VIII and von Willebrand factor by endothelial cell subsets in vivo. Blood 128(1):104–109.  https://doi.org/10.1182/blood-2015-12-684688CrossRefPubMedPubMedCentralGoogle Scholar
  126. Pappelbaum KI, Gorzelanny C, Grassle S, Suckau J, Laschke MW, Bischoff M, Bauer C, Schorpp-Kistner M, Weidenmaier C, Schneppenheim R, Obser T, Sinha B, Schneider SW (2013) Ultralarge von Willebrand factor fibers mediate luminal Staphylococcus aureus adhesion to an intact endothelial cell layer under shear stress. Circulation 128(1):50–59.  https://doi.org/10.1161/CIRCULATIONAHA.113.002008CrossRefPubMedGoogle Scholar
  127. Paulus P, Jennewein C, Zacharowski K (2011) Biomarkers of endothelial dysfunction: can they help us deciphering systemic inflammation and sepsis? Biomarkers 16(Suppl 1):S11–S21.  https://doi.org/10.3109/1354750X.2011.587893CrossRefPubMedGoogle Scholar
  128. Pegon JN, Kurdi M, Casari C, Odouard S, Denis CV, Christophe OD, Lenting PJ (2012) Factor VIII and von Willebrand factor are ligands for the carbohydrate-receptor Siglec-5. Haematologica 97(12):1855–1863.  https://doi.org/10.3324/haematol.2012.063297CrossRefPubMedPubMedCentralGoogle Scholar
  129. Pemberton S, Lindley P, Zaitsev V, Card G, Tuddenham EG, Kemball-Cook G (1997) A molecular model for the triplicated A domains of human factor VIII based on the crystal structure of human ceruloplasmin. Blood 89(7):2413–2421CrossRefGoogle Scholar
  130. Peyvandi F, Kouides P, Turecek PL, Dow E, Berntorp E (2019a) Evolution of replacement therapy for von Willebrand disease: From plasma fraction to recombinant von Willebrand factor. Blood Rev 38:100572.  https://doi.org/10.1016/j.blre.2019.04.001CrossRefPubMedGoogle Scholar
  131. Peyvandi F, Mamaev A, Wang JD, Stasyshyn O, Timofeeva M, Curry N, Cid AR, Yee TT, Kavakli K, Castaman G, Sytkowski A (2019b) Phase 3 study of recombinant von Willebrand factor in patients with severe von Willebrand disease who are undergoing elective surgery. J Thromb Haemost 17(1):52–62.  https://doi.org/10.1111/jth.14313CrossRefPubMedGoogle Scholar
  132. Pfistershammer K, Stockl J, Siekmann J, Turecek PL, Schwarz HP, Reipert BM (2006) Recombinant factor VIII and factor VIII-von Willebrand factor complex do not present danger signals for human dendritic cells. Thromb Haemost 96(3):309–316.  https://doi.org/10.1160/TH05-11-0729CrossRefPubMedGoogle Scholar
  133. Pinsky DJ, Naka Y, Liao H, Oz MC, Wagner DD, Mayadas TN, Johnson RC, Hynes RO, Heath M, Lawson CA, Stern DM (1996) Hypoxia-induced exocytosis of endothelial cell Weibel-Palade bodies. A mechanism for rapid neutrophil recruitment after cardiac preservation. J Clin Invest 97 (2):493–500.  https://doi.org/10.1172/jci118440
  134. Pottinger BE, Read RC, Paleolog EM, Higgins PG, Pearson JD (1989) von Willebrand factor is an acute phase reactant in man. Thromb Res 53(4):387–394.  https://doi.org/10.1016/0049-3848(89)90317-4CrossRefPubMedGoogle Scholar
  135. Poulter NS, Pollitt AY, Owen DM, Gardiner EE, Andrews RK, Shimizu H, Ishikawa D, Bihan D, Farndale RW, Moroi M, Watson SP, Jung SM (2017) Clustering of glycoprotein VI (GPVI) dimers upon adhesion to collagen as a mechanism to regulate GPVI signaling in platelets. J Thromb Haemost 15(3):549–564.  https://doi.org/10.1111/jth.13613CrossRefPubMedPubMedCentralGoogle Scholar
  136. Pratt KP, Shen BW, Takeshima K, Davie EW, Fujikawa K, Stoddard BL (1999) Structure of the C2 domain of human factor VIII at 1.5 A resolution. Nature 402 (6760):439–442.  https://doi.org/10.1038/46601
  137. Preston AE, Barr A (1964) The Plasma Concentration of Factor Viii in the Normal Population. Ii. The Effects of Age, Sex and Blood Group. Br J Haematol 10:238–245.  https://doi.org/10.1111/j.1365-2141.1964.tb00698.xCrossRefPubMedGoogle Scholar
  138. Przeradzka MA, Meems H, van der Zwaan C, Ebberink E, van den Biggelaar M, Mertens K, Meijer AB (2018) The D’ domain of von Willebrand factor requires the presence of the D3 domain for optimal factor VIII binding. Biochem J 475(17):2819–2830.  https://doi.org/10.1042/BCJ20180431CrossRefPubMedGoogle Scholar
  139. Randi AM, Smith KE, Castaman G (2018) von Willebrand factor regulation of blood vessel formation. Blood 132(2):132–140.  https://doi.org/10.1182/blood-2018-01-769018CrossRefPubMedPubMedCentralGoogle Scholar
  140. Rastegarlari G, Pegon JN, Casari C, Odouard S, Navarrete AM, Saint-Lu N, van Vlijmen BJ, Legendre P, Christophe OD, Denis CV, Lenting PJ (2012) Macrophage LRP1 contributes to the clearance of von Willebrand factor. Blood 119(9):2126–2134.  https://doi.org/10.1182/blood-2011-08-373605CrossRefPubMedGoogle Scholar
  141. Ratnoff OD (1987) The evolution of hemostatic mechanisms. Perspect Biol Med 31(1):4–33.  https://doi.org/10.1353/pbm.1987.0003CrossRefPubMedGoogle Scholar
  142. Reinhart K, Bayer O, Brunkhorst F, Meisner M (2002) Markers of endothelial damage in organ dysfunction and sepsis. Crit Care Med 30(5 Suppl):S302–S312.  https://doi.org/10.1097/00003246-200205001-00021CrossRefPubMedGoogle Scholar
  143. Reininger AJ, Heijnen HF, Schumann H, Specht HM, Schramm W, Ruggeri ZM (2006) Mechanism of platelet adhesion to von Willebrand factor and microparticle formation under high shear stress. Blood 107(9):3537–3545.  https://doi.org/10.1182/blood-2005-02-0618CrossRefPubMedPubMedCentralGoogle Scholar
  144. Rivera J, Lozano ML, Navarro-Nunez L, Vicente V (2009) Platelet receptors and signaling in the dynamics of thrombus formation. Haematologica 94(5):700–711.  https://doi.org/10.3324/haematol.2008.003178CrossRefPubMedPubMedCentralGoogle Scholar
  145. Rojo Pulido I, Nightingale TD, Darchen F, Seabra MC, Cutler DF, Gerke V (2011) Myosin Va acts in concert with Rab27a and MyRIP to regulate acute von-Willebrand factor release from endothelial cells. Traffic 12(10):1371–1382.  https://doi.org/10.1111/j.1600-0854.2011.01248.xCrossRefPubMedGoogle Scholar
  146. Romani de Wit T, Rondaij MG, Hordijk PL, Voorberg J, van Mourik JA (2003) Real-time imaging of the dynamics and secretory behavior of Weibel-Palade bodies. Arterioscler Thromb Vasc Biol 23(5):755–761.  https://doi.org/10.1161/01.ATV.0000069847.72001.E8CrossRefPubMedGoogle Scholar
  147. Romo GM, Dong JF, Schade AJ, Gardiner EE, Kansas GS, Li CQ, McIntire LV, Berndt MC, Lopez JA (1999) The glycoprotein Ib-IX-V complex is a platelet counterreceptor for P-selectin. J Exp Med 190(6):803–814.  https://doi.org/10.1084/jem.190.6.803CrossRefPubMedPubMedCentralGoogle Scholar
  148. Rondaij MG, Bierings R, Kragt A, van Mourik JA, Voorberg J (2006) Dynamics and plasticity of Weibel-Palade bodies in endothelial cells. Arterioscler Thromb Vasc Biol 26(5):1002–1007.  https://doi.org/10.1161/01.ATV.0000209501.56852.6cCrossRefPubMedGoogle Scholar
  149. Rosenberg JB, Foster PA, Kaufman RJ, Vokac EA, Moussalli M, Kroner PA, Montgomery RR (1998) Intracellular trafficking of factor VIII to von Willebrand factor storage granules. J Clin Invest 101(3):613–624.  https://doi.org/10.1172/JCI1250CrossRefPubMedPubMedCentralGoogle Scholar
  150. Rosenberg JB, Greengard JS, Montgomery RR (2000) Genetic induction of a releasable pool of factor VIII in human endothelial cells. Arterioscler Thromb Vasc Biol 20(12):2689–2695.  https://doi.org/10.1161/01.atv.20.12.2689CrossRefPubMedGoogle Scholar
  151. Ruggeri ZM, Mendolicchio GL (2015) Interaction of von Willebrand factor with platelets and the vessel wall. Hamostaseologie 35(3):211–224.  https://doi.org/10.5482/HAMO-14-12-0081CrossRefPubMedGoogle Scholar
  152. Ruggeri ZM, Zimmerman TS (1980) Variant von Willebrand’s disease: characterization of two subtypes by analysis of multimeric composition of factor VIII/von Willebrand factor in plasma and platelets. J Clin Invest 65(6):1318–1325.  https://doi.org/10.1172/JCI109795CrossRefPubMedPubMedCentralGoogle Scholar
  153. Ruggeri ZM, Orje JN, Habermann R, Federici AB, Reininger AJ (2006) Activation-independent platelet adhesion and aggregation under elevated shear stress. Blood 108(6):1903–1910.  https://doi.org/10.1182/blood-2006-04-011551CrossRefPubMedPubMedCentralGoogle Scholar
  154. Sadler JE, Shelton-Inloes BB, Sorace JM, Harlan JM, Titani K, Davie EW (1985) Cloning and characterization of two cDNAs coding for human von Willebrand factor. Proc Natl Acad Sci U S A 82(19):6394–6398.  https://doi.org/10.1073/pnas.82.19.6394CrossRefPubMedPubMedCentralGoogle Scholar
  155. Sadler JE, Budde U, Eikenboom JC, Favaloro EJ, Hill FG, Holmberg L, Ingerslev J, Lee CA, Lillicrap D, Mannucci PM, Mazurier C, Meyer D, Nichols WL, Nishino M, Peake IR, Rodeghiero F, Schneppenheim R, Ruggeri ZM, Srivastava A, Montgomery RR, Federici AB, Party Working on von Willebrand Disease C (2006) Update on the pathophysiology and classification of von Willebrand disease: a report of the Subcommittee on von Willebrand Factor. J Thromb Haemost 4(10):2103–2114.  https://doi.org/10.1111/j.1538-7836.2006.02146.x
  156. Saenko EL, Scandella D (1997) The acidic region of the factor VIII light chain and the C2 domain together form the high affinity binding site for von willebrand factor. J Biol Chem 272(29):18007–18014.  https://doi.org/10.1074/jbc.272.29.18007CrossRefPubMedGoogle Scholar
  157. Saenko EL, Yakhyaev AV, Mikhailenko I, Strickland DK, Sarafanov AG (1999) Role of the low density lipoprotein-related protein receptor in mediation of factor VIII catabolism. J Biol Chem 274(53):37685–37692.  https://doi.org/10.1074/jbc.274.53.37685CrossRefPubMedGoogle Scholar
  158. Sakariassen KS, Orning L, Turitto VT (2015) The impact of blood shear rate on arterial thrombus formation. Future Sci OA 1 (4):FSO30.  https://doi.org/10.4155/fso.15.28
  159. Salvagno GL, Astermark J, Ekman M, Franchini M, Guidi GC, Lippi G, Poli G, Berntorp E (2007) Impact of different inhibitor reactivities with commercial factor VIII concentrates on thrombin generation. Haemophilia 13(1):51–56.  https://doi.org/10.1111/j.1365-2516.2006.01400.xCrossRefPubMedGoogle Scholar
  160. Savage B, Saldivar E, Ruggeri ZM (1996) Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 84(2):289–297.  https://doi.org/10.1016/s0092-8674(00)80983-6CrossRefPubMedGoogle Scholar
  161. Savage B, Almus-Jacobs F, Ruggeri ZM (1998) Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell 94(5):657–666.  https://doi.org/10.1016/s0092-8674(00)81607-4CrossRefPubMedGoogle Scholar
  162. Schneider SW, Nuschele S, Wixforth A, Gorzelanny C, Alexander-Katz A, Netz RR, Schneider MF (2007) Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc Natl Acad Sci U S A 104(19):7899–7903.  https://doi.org/10.1073/pnas.0608422104CrossRefPubMedPubMedCentralGoogle Scholar
  163. Schwarz HP, Lenting PJ, Binder B, Mihaly J, Denis C, Dorner F, Turecek PL (2000) Involvement of low-density lipoprotein receptor-related protein (LRP) in the clearance of factor VIII in von Willebrand factor-deficient mice. Blood 95(5):1703–1708CrossRefGoogle Scholar
  164. Senis YA, Richardson M, Tinlin S, Maurice DH, Giles AR (1996) Changes in the pattern of distribution of von Willebrand factor in rat aortic endothelial cells following thrombin generation in vivo. Br J Haematol 93(1):195–203.  https://doi.org/10.1046/j.1365-2141.1996.4661005.xCrossRefPubMedGoogle Scholar
  165. Shahani T, Covens K, Lavend’homme R, Jazouli N, Sokal E, Peerlinck K, Jacquemin M (2014) Human liver sinusoidal endothelial cells but not hepatocytes contain factor VIII. J Thromb Haemost 12(1):36–42.  https://doi.org/10.1111/jth.12412CrossRefPubMedGoogle Scholar
  166. Shi Q, Wilcox DA, Fahs SA, Kroner PA, Montgomery RR (2003) Expression of human factor VIII under control of the platelet-specific alphaIIb promoter in megakaryocytic cell line as well as storage together with VWF. Mol Genet Metab 79(1):25–33CrossRefGoogle Scholar
  167. Shi Q, Fahs SA, Kuether EL, Cooley BC, Weiler H, Montgomery RR (2010) Targeting FVIII expression to endothelial cells regenerates a releasable pool of FVIII and restores hemostasis in a mouse model of hemophilia A. Blood 116(16):3049–3057.  https://doi.org/10.1182/blood-2010-03-272419CrossRefPubMedPubMedCentralGoogle Scholar
  168. Simon DI, Chen Z, Xu H, Li CQ, Dong J, McIntire LV, Ballantyne CM, Zhang L, Furman MI, Berndt MC, Lopez JA (2000) Platelet glycoprotein ibalpha is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J Exp Med 192(2):193–204.  https://doi.org/10.1084/jem.192.2.193CrossRefPubMedPubMedCentralGoogle Scholar
  169. Sivaraman B, Latour RA (2011) Delineating the roles of the GPIIb/IIIa and GP-Ib-IX-V platelet receptors in mediating platelet adhesion to adsorbed fibrinogen and albumin. Biomaterials 32(23):5365–5370.  https://doi.org/10.1016/j.biomaterials.2011.04.011CrossRefPubMedPubMedCentralGoogle Scholar
  170. Souto JC, Almasy L, Muniz-Diaz E, Soria JM, Borrell M, Bayen L, Mateo J, Madoz P, Stone W, Blangero J, Fontcuberta J (2000) Functional effects of the ABO locus polymorphism on plasma levels of von Willebrand factor, factor VIII, and activated partial thromboplastin time. Arterioscler Thromb Vasc Biol 20(8):2024–2028.  https://doi.org/10.1161/01.atv.20.8.2024CrossRefPubMedGoogle Scholar
  171. Springer TA (2011) Biology and physics of von Willebrand factor concatamers. J Thromb Haemost 9(Suppl 1):130–143.  https://doi.org/10.1111/j.1538-7836.2011.04320.xCrossRefPubMedPubMedCentralGoogle Scholar
  172. Starke RD, Ferraro F, Paschalaki KE, Dryden NH, McKinnon TA, Sutton RE, Payne EM, Haskard DO, Hughes AD, Cutler DF, Laffan MA, Randi AM (2011) Endothelial von Willebrand factor regulates angiogenesis. Blood 117(3):1071–1080.  https://doi.org/10.1182/blood-2010-01-264507CrossRefPubMedPubMedCentralGoogle Scholar
  173. Suo J, Linke B, Meyer dos Santos S, Pierre S, Stegner D, Zhang DD, Denis CV, Geisslinger G, Nieswandt B, Scholich K (2014) Neutrophils mediate edema formation but not mechanical allodynia during zymosan-induced inflammation. J Leukoc Biol 96(1):133–142.  https://doi.org/10.1189/jlb.3A1213-628RCrossRefPubMedGoogle Scholar
  174. Suzuki T, Arai M, Amano K, Kagawa K, Fukutake K (1996) Factor VIII inhibitor antibodies with C2 domain specificity are less inhibitory to factor VIII complexed with von Willebrand factor. Thromb Haemost 76(5):749–754CrossRefGoogle Scholar
  175. Swystun LL, Lai JD, Notley C, Georgescu I, Paine AS, Mewburn J, Nesbitt K, Schledzewski K, Geraud C, Kzhyshkowska J, Goerdt S, Hopman W, Montgomery RR, James PD, Lillicrap D (2018) The endothelial cell receptor stabilin-2 regulates VWF-FVIII complex half-life and immunogenicity. J Clin Invest 128(9):4057–4073.  https://doi.org/10.1172/JCI96400CrossRefPubMedPubMedCentralGoogle Scholar
  176. Swystun LL, Notley C, Georgescu I, Lai JD, Nesbitt K, James PD, Lillicrap D (2019) The endothelial lectin clearance receptor CLEC4M binds and internalizes factor VIII in a VWF-dependent and independent manner. J Thromb Haemost 17(4):681–694.  https://doi.org/10.1111/jth.14404CrossRefPubMedGoogle Scholar
  177. Tagliavacca L, Moon N, Dunham WR, Kaufman RJ (1997) Identification and functional requirement of Cu(I) and its ligands within coagulation factor VIII. J Biol Chem 272(43):27428–27434.  https://doi.org/10.1074/jbc.272.43.27428CrossRefPubMedGoogle Scholar
  178. Thompson AR (2003) Structure and function of the factor VIII gene and protein. Semin Thromb Hemost 29(1):11–22.  https://doi.org/10.1055/s-2003-37935CrossRefPubMedGoogle Scholar
  179. Titani K, Kumar S, Takio K, Ericsson LH, Wade RD, Ashida K, Walsh KA, Chopek MW, Sadler JE, Fujikawa K (1986) Amino acid sequence of human von Willebrand factor. Biochemistry 25(11):3171–3184.  https://doi.org/10.1021/bi00359a015CrossRefPubMedGoogle Scholar
  180. Trabold K, Makhoul S, Gambaryan S, van Ryn J, Walter U, Jurk K (2019) The Direct Thrombin Inhibitors Dabigatran and Lepirudin Inhibit GPIbalpha-Mediated Platelet Aggregation. Thromb Haemost 119(6):916–929.  https://doi.org/10.1055/s-0039-1685139CrossRefPubMedGoogle Scholar
  181. Tracy RP, Arnold AM, Ettinger W, Fried L, Meilahn E, Savage P (1999) The relationship of fibrinogen and factors VII and VIII to incident cardiovascular disease and death in the elderly: results from the cardiovascular health study. Arterioscler Thromb Vasc Biol 19(7):1776–1783.  https://doi.org/10.1161/01.atv.19.7.1776CrossRefPubMedGoogle Scholar
  182. Tsai HM, Lian EC (1998) Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura. N Engl J Med 339(22):1585–1594.  https://doi.org/10.1056/NEJM199811263392203CrossRefPubMedPubMedCentralGoogle Scholar
  183. Tuddenham EG, Lane RS, Rotblat F, Johnson AJ, Snape TJ, Middleton S, Kernoff PB (1982) Response to infusions of polyelectrolyte fractionated human factor VIII concentrate in human haemophilia A and von Willebrand’s disease. Br J Haematol 52(2):259–267.  https://doi.org/10.1111/j.1365-2141.1982.tb03888.xCrossRefPubMedGoogle Scholar
  184. Turecek PL, Mitterer A, Matthiessen HP, Gritsch H, Varadi K, Siekmann J, Schnecker K, Plaimauer B, Kaliwoda M, Purtscher M, Woehrer W, Mundt W, Muchitsch EM, Suiter T, Ewenstein B, Ehrlich HJ, Schwarz HP (2009) Development of a plasma- and albumin-free recombinant von Willebrand factor. Hamostaseologie 29(Suppl 1):S32–S38PubMedGoogle Scholar
  185. Turner NA, Moake JL (2015) Factor VIII Is Synthesized in Human Endothelial Cells, Packaged in Weibel-Palade Bodies and Secreted Bound to ULVWF Strings. PLoS ONE 10(10):e0140740.  https://doi.org/10.1371/journal.pone.0140740CrossRefPubMedPubMedCentralGoogle Scholar
  186. Urisono Y, Sakata A, Matsui H, Kasuda S, Ono S, Yoshimoto K, Nishio K, Sho M, Akiyama M, Miyata T, Okuchi K, Nishimura S, Sugimoto M (2018) Von Willebrand Factor Aggravates Hepatic Ischemia-Reperfusion Injury by Promoting Neutrophil Recruitment in Mice. Thromb Haemost 118(4):700–708.  https://doi.org/10.1055/s-0038-1636529CrossRefPubMedGoogle Scholar
  187. van Bladel ER, Tuinenburg A, Roest M, de Groot PG, Schutgens RE (2014) Factor VIII concentrate infusion in patients with haemophilia results in decreased von Willebrand factor and ADAMTS-13 activity. Haemophilia 20(1):92–98.  https://doi.org/10.1111/hae.12266CrossRefPubMedGoogle Scholar
  188. van Mourik JA, Boertjes R, Huisveld IA, Fijnvandraat K, Pajkrt D, van Genderen PJ, Fijnheer R (1999) von Willebrand factor propeptide in vascular disorders: A tool to distinguish between acute and chronic endothelial cell perturbation. Blood 94(1):179–185CrossRefGoogle Scholar
  189. van Schooten CJ, Shahbazi S, Groot E, Oortwijn BD, van den Berg HM, Denis CV, Lenting PJ (2008) Macrophages contribute to the cellular uptake of von Willebrand factor and factor VIII in vivo. Blood 112(5):1704–1712.  https://doi.org/10.1182/blood-2008-01-133181CrossRefPubMedGoogle Scholar
  190. Verbruggen B, Giles A, Samis J, Verbeek K, Mensink E, Novakova I (2001) The type of factor VIII deficient plasma used influences the performance of the Nijmegen modification of the Bethesda assay for factor VIII inhibitors. Thromb Haemost 86(6):1435–1439PubMedGoogle Scholar
  191. Verhenne S, Denorme F, Libbrecht S, Vandenbulcke A, Pareyn I, Deckmyn H, Lambrecht A, Nieswandt B, Kleinschnitz C, Vanhoorelbeke K, De Meyer SF (2015) Platelet-derived VWF is not essential for normal thrombosis and hemostasis but fosters ischemic stroke injury in mice. Blood 126(14):1715–1722.  https://doi.org/10.1182/blood-2015-03-632901CrossRefPubMedGoogle Scholar
  192. Verweij CL, Hofker M, Quadt R, Briet E, Pannekoek H (1985) RFLP for a human von Willebrand factor (vWF) cDNA clone, pvWF1100. Nucleic Acids Res 13(22):8289.  https://doi.org/10.1093/nar/13.22.8289CrossRefPubMedPubMedCentralGoogle Scholar
  193. Vischer UM, Ingerslev J, Wollheim CB, Mestries JC, Tsakiris DA, Haefeli WE, Kruithof EK (1997) Acute von Willebrand factor secretion from the endothelium in vivo: assessment through plasma propeptide (vWf:AgII) Levels. Thromb Haemost 77(2):387–393CrossRefGoogle Scholar
  194. Vlot AJ, Koppelman SJ, van den Berg MH, Bouma BN, Sixma JJ (1995) The affinity and stoichiometry of binding of human factor VIII to von Willebrand factor. Blood 85(11):3150–3157CrossRefGoogle Scholar
  195. Vlot AJ, Koppelman SJ, Meijers JC, Dama C, van den Berg HM, Bouma BN, Sixma JJ, Willems GM (1996) Kinetics of factor VIII-von Willebrand factor association. Blood 87(5):1809–1816CrossRefGoogle Scholar
  196. Vlot AJ, Mauser-Bunschoten EP, Zarkova AG, Haan E, Kruitwagen CL, Sixma JJ, van den Berg HM (2000) The half-life of infused factor VIII is shorter in hemophiliac patients with blood group O than in those with blood group A. Thromb Haemost 83(1):65–69CrossRefGoogle Scholar
  197. Wagner DD (1990) Cell biology of von Willebrand factor. Annu Rev Cell Biol 6:217–246.  https://doi.org/10.1146/annurev.cb.06.110190.001245CrossRefPubMedGoogle Scholar
  198. Walker FJ, Scandella D, Fay PJ (1990) Identification of the binding site for activated protein C on the light chain of factors V and VIII. J Biol Chem 265(3):1484–1489PubMedGoogle Scholar
  199. Ward CM, Tetaz TJ, Andrews RK, Berndt MC (1997) Binding of the von Willebrand factor A1 domain to histone. Thromb Res 86(6):469–477.  https://doi.org/10.1016/s0049-3848(97)00096-0CrossRefPubMedGoogle Scholar
  200. Weeterings C, de Groot PG, Adelmeijer J, Lisman T (2008) The glycoprotein Ib-IX-V complex contributes to tissue factor-independent thrombin generation by recombinant factor VIIa on the activated platelet surface. Blood 112(8):3227–3233.  https://doi.org/10.1182/blood-2008-02-139113CrossRefPubMedGoogle Scholar
  201. Weisel JW, Nagaswami C, Vilaire G, Bennett JS (1992) Examination of the platelet membrane glycoprotein IIb-IIIa complex and its interaction with fibrinogen and other ligands by electron microscopy. J Biol Chem 267(23):16637–16643PubMedGoogle Scholar
  202. Weiss HJ, Sussman, II, Hoyer LW (1977) Stabilization of factor VIII in plasma by the von Willebrand factor. Studies on posttransfusion and dissociated factor VIII and in patients with von Willebrand’s disease. J Clin Invest 60 (2):390–404.  https://doi.org/10.1172/jci108788
  203. White GC, 2nd, Rosendaal F, Aledort LM, Lusher JM, Rothschild C, Ingerslev J, Factor V, Factor IXS (2001) Definitions in hemophilia. Recommendation of the scientific subcommittee on factor VIII and factor IX of the scientific and standardization committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost 85 (3):560Google Scholar
  204. Wieberdink RG, van Schie MC, Koudstaal PJ, Hofman A, Witteman JC, de Maat MP, Leebeek FW, Breteler MM (2010) High von Willebrand factor levels increase the risk of stroke: the Rotterdam study. Stroke 41(10):2151–2156.  https://doi.org/10.1161/STROKEAHA.110.586289CrossRefPubMedGoogle Scholar
  205. Wion KL, Kelly D, Summerfield JA, Tuddenham EG, Lawn RM (1985) Distribution of factor VIII mRNA and antigen in human liver and other tissues. Nature 317(6039):726–729.  https://doi.org/10.1038/317726a0CrossRefPubMedGoogle Scholar
  206. Wise RJ, Dorner AJ, Krane M, Pittman DD, Kaufman RJ (1991) The role of von Willebrand factor multimers and propeptide cleavage in binding and stabilization of factor VIII. J Biol Chem 266(32):21948–21955PubMedGoogle Scholar
  207. Yuan L, Chan GC, Beeler D, Janes L, Spokes KC, Dharaneeswaran H, Mojiri A, Adams WJ, Sciuto T, Garcia-Cardena G, Molema G, Kang PM, Jahroudi N, Marsden PA, Dvorak A, Regan ER, Aird WC (2016) A role of stochastic phenotype switching in generating mosaic endothelial cell heterogeneity. Nat Commun 7:10160.  https://doi.org/10.1038/ncomms10160CrossRefPubMedPubMedCentralGoogle Scholar
  208. Zhou YF, Springer TA (2014) Highly reinforced structure of a C-terminal dimerization domain in von Willebrand factor. Blood 123(12):1785–1793.  https://doi.org/10.1182/blood-2013-11-523639CrossRefPubMedPubMedCentralGoogle Scholar
  209. Zhou YF, Eng ET, Zhu J, Lu C, Walz T, Springer TA (2012) Sequence and structure relationships within von Willebrand factor. Blood 120(2):449–458.  https://doi.org/10.1182/blood-2012-01-405134CrossRefPubMedPubMedCentralGoogle Scholar
  210. Zhu X, Cao Y, Wei L, Cai P, Xu H, Luo H, Bai X, Lu L, Liu JR, Fan W, Zhao BQ (2016) von Willebrand factor contributes to poor outcome in a mouse model of intracerebral haemorrhage. Sci Rep 6:35901.  https://doi.org/10.1038/srep35901CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Center for Thrombosis and Hemostasis (CTH), University Medical Center MainzMainzGermany
  2. 2.German Center for Cardiovascular Research (DZHK)MainzGermany

Personalised recommendations