Advertisement

Embryonic and Fetal Human Hemoglobins: Structures, Oxygen Binding, and Physiological Roles

  • James M. ManningEmail author
  • Lois R. Manning
  • Antoine Dumoulin
  • Julio C. Padovan
  • Brian Chait
Chapter
  • 63 Downloads
Part of the Subcellular Biochemistry book series (SCBI, volume 94)

Abstract

During the past two decades, significant advances have been made in our understanding of the human fetal and embryonic hemoglobins made possible by the availability of pure, highly characterized materials and novel methods, e.g., nano gel filtration, to study their properties and to correct some misconceptions. For example, whereas the structures of the human adult, fetal, and embryonic hemoglobins are very similar, it has generally been assumed that functional differences between them are due to primary sequence effects. However, more recent studies indicate that the strengths of the interactions between their subunits are very different leading to changes in their oxygen binding properties compared to adult hemoglobin. Fetal hemoglobin in the oxy conformation is a much stronger tetramer than adult hemoglobin and dissociates to dimers 70-times less than adult hemoglobin. This property may form the basis for its protective effect against malaria. A major source of the increased strength of fetal hemoglobin resides within the A-helix of its gamma subunit as demonstrated in studies with the hybrid hemoglobin Felix and related hybrids. Re-activating fetal hemoglobin synthesis in vivo is currently a major focus of clinical efforts designed to treat sickle cell anemia since it inhibits the aggregation of sickle hemoglobin. The mechanisms for both the increased oxygen affinity of fetal hemoglobin and its decreased response to DPG have been clarified. Acetylated fetal hemoglobin, which makes up 10–20% of total fetal hemoglobin, has a significantly weakened tetramer structure suggesting a similar role for other kinds of protein acetylation. Embryonic hemoglobins have the weakest tetramer and dimer structures. In general, the progressively increasing strength of the subunit interfaces of the hemoglobin family during development from the embryonic to the fetal and ultimately to the adult types correlates with their temporal appearance and disappearance in vivo, i.e., ontogeny.

Keywords

Hemoglobin Sickle cell Malaria Acetylation Oxygen affinity Nano gel filtration Ontogeny 

References

  1. Adachi K, Konitzer P, Pang J, Reddy KS, Surrey S (1997) Amino acids responsible for decreased 2,3-biphosphoglycerate binding to fetal hemoglobin. Blood 90(8):2916–2920CrossRefGoogle Scholar
  2. Adachi K, Pang J, Konitzer P, Surrey S (1996) Polymerization of recombinant hemoglobin F gamma E6V and hemoglobin F gamma E6V, gamma Q87T alone, and in mixtures with hemoglobin S. Blood 87(4):1617–1624CrossRefGoogle Scholar
  3. Adachi K, Zhao Y, Yamaguchi T, Surrey S (2000) Assembly of gamma- with alpha-globin chains to form human fetal hemoglobin in vitro and in vivo. J Biol Chem 275(17):12424–12429.  https://doi.org/10.1074/jbc.C000137200CrossRefPubMedGoogle Scholar
  4. Akinsheye I, Alsultan A, Solovieff N, Ngo D, Baldwin CT, Sebastiani P, Chui DH, Steinberg MH (2011) Fetal hemoglobin in sickle cell anemia. Blood 118(1):19–27.  https://doi.org/10.1182/blood-2011-03-325258CrossRefPubMedPubMedCentralGoogle Scholar
  5. Allison AC (1954) Protection afforded by sickle-cell trait against subtertian malareal infection. Br Med J 1(4857):290–294.  https://doi.org/10.1136/bmj.1.4857.290CrossRefPubMedPubMedCentralGoogle Scholar
  6. Antonini E, Brunori M (1971) Hemoglobin and myoglobin in their reactions with ligands. Elsevier Science Publishing Co., New YorkGoogle Scholar
  7. Arnone A (1972) X-ray diffraction study of binding of 2,3-diphosphoglycerate to human deoxyhaemoglobin. Nature 237(5351):146–149CrossRefGoogle Scholar
  8. Baron MH (1996) Developmental regulation of the vertebrate globin multigene family. Gene Expr 6(3):129–137PubMedGoogle Scholar
  9. Benesch R, Benesch RE (1967) The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin. Biochem Biophys Res Commun 26(2):162–167CrossRefGoogle Scholar
  10. Bookchin RM, Nagel RL (1971) Ligand-induced conformational dependence of hemoglobin in sickling interactions. J Mol Biol 60(2):263–270.  https://doi.org/10.1016/0022-2836(71)90292-0CrossRefPubMedGoogle Scholar
  11. Bookchin RM, Nagel RL, Balazs T (1975) Role of hybrid tetramer formation in gelation of haemoglobin S. Nature 256(5519):667–668.  https://doi.org/10.1038/256667a0CrossRefPubMedGoogle Scholar
  12. Brendel C, Guda S, Renella R, Bauer DE, Canver MC, Kim YJ, Heeney MM, Klatt D, Fogel J, Milsom MD, Orkin SH, Gregory RI, Williams DA (2016) Lineage-specific BCL11A knockdown circumvents toxicities and reverses sickle phenotype. J Clin Invest 126(10):3868–3878.  https://doi.org/10.1172/jci87885CrossRefPubMedPubMedCentralGoogle Scholar
  13. Brittain T (2002) Molecular aspects of embryonic hemoglobin function. Mol Aspects Med 23(4):293–342.  https://doi.org/10.1016/S0098-2997(02)00004-3CrossRefPubMedGoogle Scholar
  14. Bunn HF (1969) Subunit dissociation of certain abnormal human hemoglobins. J Clin Invest 48(1):126–138.  https://doi.org/10.1172/jci105961CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bunn HF, Briehl RW (1970) The interaction of 2,3-diphosphoglycerate with various human hemoglobins. J Clin Invest 49(6):1088–1095.  https://doi.org/10.1172/jci106324CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bunn HF, Forget BG (1986) Hemoglobin: Molecular, genetic, and clinical aspects. W.B Saunders, Philadelphia, PAGoogle Scholar
  17. Chen W, Dumoulin A, Li X, Padovan JC, Chait BT, Buonopane R, Platt OS, Manning LR, Manning JM (2000) Transposing sequences between fetal and adult hemoglobins indicates which subunits and regulatory molecule interfaces are functionally related. Biochemistry 39(13):3774–3781.  https://doi.org/10.1021/bi992691lCrossRefPubMedGoogle Scholar
  18. Demirci S, Uchida N, Tisdale JF (2018) Gene therapy for sickle cell disease: An update. Cytotherapy 20(7):899–910.  https://doi.org/10.1016/j.jcyt.2018.04.003CrossRefPubMedPubMedCentralGoogle Scholar
  19. DeSimone J, Heller P, Hall L, Zwiers D (1982) 5-Azacytidine stimulates fetal hemoglobin synthesis in anemic baboons. Proc Natl Acad Sci U S A 79(14):4428–4431CrossRefGoogle Scholar
  20. Dumoulin A, Manning LR, Jenkins WT, Winslow RM, Manning JM (1997) Exchange of subunit interfaces between recombinant adult and fetal hemoglobins. Evidence for a functional inter-relationship among regions of the tetramer. J Biol Chem 272 (50):31326–31332Google Scholar
  21. Dumoulin A, Padovan JC, Manning LR, Popowicz A, Winslow RM, Chait BT, Manning JM (1998) The N-terminal sequence affects distant helix interactions in hemoglobin. Implications for mutant proteins from studies on recombinant hemoglobin felix. J Biol Chem 273 (52):35032–35038.  https://doi.org/10.1074/jbc.273.52.35032
  22. Dyson FW, Eddington AS (1919) Davidson C (1920) A determination of the deflection of light by the sun’s gravitational field, from observations made at the total eclipse of May 29. Philos Trans R Soc Lond 220(571–581):291–333.  https://doi.org/10.1098/rsta.1920.0009CrossRefGoogle Scholar
  23. Eaton WA, Bunn HF (2017) Treating sickle cell disease by targeting HbS polymerization. Blood 129(20):2719–2726.  https://doi.org/10.1182/blood-2017-02-765891CrossRefPubMedPubMedCentralGoogle Scholar
  24. Edelstein SJ, Rehmar MJ, Olson JS, Gibson QH (1970) Functional aspects of the subunit association-dissociation equilibria of hemoglobin. J Biol Chem 245(17):4372–4381PubMedGoogle Scholar
  25. Fang TY, M. Z, Simplaceanu V, Ho NT, Ho C (1999) Assessment of roles of surface histidyl residues in the molecular basis of the Bohr effect and of beta 143 histidine in the binding of 2,3-bisphosphoglycerate in human normal adult hemoglobin. Biochemistry 38 (40):13423–13432.  https://doi.org/10.1021/bi9911379
  26. Frier JA, Perutz MF (1977) Structure of human foetal deoxyhaemoglobin. J Mol Biol 112(1):97–112CrossRefGoogle Scholar
  27. Genbacev O, Zhou Y, Ludlow JW, Fisher SJ (1997) Regulation of human placental development by oxygen tension. Science 277(5332):1669–1672.  https://doi.org/10.1126/science.277.5332.1669CrossRefPubMedGoogle Scholar
  28. Groudine M, Eisenman R, Weintraub H (1981) Chromatin structure of endogenous retroviral genes and activation by an inhibitor of DNA methylation. Nature 292(5821):311–317CrossRefGoogle Scholar
  29. Harrington DJ, Adachi K, Royer WE Jr (1997) The high resolution crystal structure of deoxyhemoglobin S. J Mol Biol 272(3):398–407.  https://doi.org/10.1006/jmbi.1997.1253CrossRefPubMedGoogle Scholar
  30. He Z, Russell JE (2001) Expression, purification, and characterization of human hemoglobins Gower-1 (zeta(2)epsilon(2)), Gower-2 (alpha(2)epsilon(2)), and Portland-2 (zeta(2)beta(2)) assembled in complex transgenic-knockout mice. Blood 97(4):1099–1105CrossRefGoogle Scholar
  31. Higgs DR, Garrick D, Anguita E, De Gobbi M, Hughes J, Muers M, Vernimmen D, Lower K, Law M, Argentaro A, Deville MA, Gibbons R (2005) Understanding alpha-globin gene regulation: Aiming to improve the management of thalassemia. Ann N Y Acad Sci 1054:92–102.  https://doi.org/10.1196/annals.1345.012CrossRefPubMedGoogle Scholar
  32. Hofmann O, Brittain T (1996) Ligand binding kinetics and dissociation of the human embryonic haemoglobins. Biochem J 315(Pt 1):65–70CrossRefGoogle Scholar
  33. Hofmann O, Mould R, Brittain T (1995) Allosteric modulation of oxygen binding to the three human embryonic haemoglobins. Biochem J 306(Pt 2):367–370CrossRefGoogle Scholar
  34. Huehns ER, Beaven GH, Stevens BL (1964) Recombination studies on haemoglobins at neutral pH. Biochem J 92(2):440–444CrossRefGoogle Scholar
  35. Huehns ER, Faroqui AM (1975) Oxygen dissociation properties of human embryonic red cells. Nature 254(5498):335–337CrossRefGoogle Scholar
  36. Huehns ER, Shooter EM (1965) Human haemoglobins. J Med Genet 2(1):48–90CrossRefGoogle Scholar
  37. Ikuta T, Papayannopoulou T, Stamatoyannopoulos G, Kan YW (1996) Globin gene switching. In vivo protein-DNA interactions of the human beta-globin locus in erythroid cells expressing the fetal or the adult globin gene program. J Biol Chem 271 (24):14082–14091.  https://doi.org/10.1074/jbc.271.24.14082
  38. Kidd RD, Mathews A, Baker HM, Brittain T, Baker EN (2001) Subunit dissociation and reassociation leads to preferential crystallization of haemoglobin Bart’s (gamma4) from solutions of human embryonic haemoglobin Portland (zeta2gamma2) at low pH. Acta Crystallogr D Biol Crystallogr 57(Pt 6):921–924CrossRefGoogle Scholar
  39. Lavelle D, Saunthararajah Y, Desimone J (2008) DNA methylation and mechanism of action of 5-azacytidine. Blood 111 (4):2485; author reply 2486.  https://doi.org/10.1182/blood-2007-10-119867
  40. Leonard A, Tisdale JF (2018) Stem cell transplantation in sickle cell disease: therapeutic potential and challenges faced. Expert Rev Hematol 11(7):547–565.  https://doi.org/10.1080/17474086.2018.1486703CrossRefPubMedGoogle Scholar
  41. Liu N, Hargreaves VV, Zhu Q, Kurland JV, Hong J, Kim W, Sher F, Macias-Trevino C, Rogers JM, Kurita R, Nakamura Y, Yuan GC, Bauer DE, Xu J, Bulyk ML, Orkin SH (2018) Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch. Cell 173 (2):430–442 e417.  https://doi.org/10.1016/j.cell.2018.03.016
  42. Lettre G, Bauer DE (2016) Fetal haemoglobin in sickle-cell disease: from genetic epidemiology to new therapeutic strategies. Lancet 387(10037):2554–2564.  https://doi.org/10.1016/s0140-6736(15)01341-0CrossRefPubMedGoogle Scholar
  43. Luzzatto L (2012) Sickle cell anaemia and malaria. Mediterr J Hematol Infect Dis 4(1):e2012065.  https://doi.org/10.4084/mjhid.2012.065CrossRefPubMedPubMedCentralGoogle Scholar
  44. Manning JM, Dumoulin A, Li X, Manning LR (1998) Normal and abnormal protein subunit interactions in hemoglobins. J Biol Chem 273(31):19359–19362.  https://doi.org/10.1074/jbc.273.31.19359CrossRefPubMedGoogle Scholar
  45. Manning JM, Dumoulin A, Manning LR, Chen W, Padovan JC, Chait BT, Popowicz A (1999) Remote contributions to subunit interactions: lessons from adult and fetal hemoglobins. Trends Biochem Sci 24(6):211–212.  https://doi.org/10.1016/S0968-0004(99)01395-XCrossRefPubMedGoogle Scholar
  46. Manning JM, Popowicz AM, Padovan JC, Chait BT, Manning LR (2012) Intrinsic regulation of hemoglobin expression by variable subunit interface strengths. FEBS J 279(3):361–369.  https://doi.org/10.1111/j.1742-4658.2011.08437.xCrossRefPubMedGoogle Scholar
  47. Manning LR, Jenkins WT, Hess JR, Vandegriff K, Winslow RM, Manning JM (1996) Subunit dissociations in natural and recombinant hemoglobins. Protein Sci 5(4):775–781.  https://doi.org/10.1002/pro.5560050423CrossRefPubMedPubMedCentralGoogle Scholar
  48. Manning LR, Manning JM (2001) The acetylation state of human fetal hemoglobin modulates the strength of its subunit interactions: long-range effects and implications for histone interactions in the nucleosome. Biochemistry 40(6):1635–1639.  https://doi.org/10.1021/bi002157+CrossRefPubMedGoogle Scholar
  49. Manning LR, Popowicz AM, Padovan J, Chait BT, Russell JE, Manning JM (2010) Developmental expression of human hemoglobins mediated by maturation of their subunit interfaces. Protein Sci 19(8):1595–1599.  https://doi.org/10.1002/pro.441CrossRefPubMedPubMedCentralGoogle Scholar
  50. Manning LR, Popowicz AM, Padovan JC, Chait BT, Manning JM (2017) Gel filtration of dilute human embryonic hemoglobins reveals basis for their increased oxygen binding. Anal Biochem 519:38–41.  https://doi.org/10.1016/j.ab.2016.12.008CrossRefPubMedGoogle Scholar
  51. Manning LR, Russell JE, Padovan JC, Chait BT, Popowicz A, Manning RS, Manning JM (2007) Human embryonic, fetal, and adult hemoglobins have different subunit interface strengths. Correlation with lifespan in the red cell. Protein Sci 16 (8):1641–1658.  https://doi.org/10.1110/ps.072891007
  52. Manning LR, Russell JE, Popowicz AM, Manning RS, Padovan JC, Manning JM (2009) Energetic differences at the subunit interfaces of normal human hemoglobins correlate with their developmental profile. Biochemistry 48(32):7568–7574.  https://doi.org/10.1021/bi900857rCrossRefPubMedPubMedCentralGoogle Scholar
  53. Mosca A, Paleari R, Leone D, Ivaldi G (2009) The relevance of hemoglobin F measurement in the diagnosis of thalassemias and related hemoglobinopathies. Clin Biochem 42(18):1797–1801.  https://doi.org/10.1016/j.clinbiochem.2009.06.023CrossRefPubMedGoogle Scholar
  54. Musallam KM, Taher AT, Cappellini MD, Sankaran VG (2013) Clinical experience with fetal hemoglobin induction therapy in patients with beta-thalassemia. Blood 121 (12):2199–2212; quiz 2372.  https://doi.org/10.1182/blood-2012-10-408021
  55. Nagel RL, Bookchin RM, Johnson J, Labie D, Wajcman H, Isaac-Sodeye WA, Honig GR, Schiliro G, Crookston JH, Matsutomo K (1979) Structural bases of the inhibitory effects of hemoglobin F and hemoglobin A2 on the polymerization of hemoglobin S. Proc Natl Acad Sci U S A 76(2):670–672CrossRefGoogle Scholar
  56. Padlan EA, Love WE (1985) Refined crystal structure of deoxyhemoglobin S. I. Restrained least-squares refinement at 3.0-A resolution. J Biol Chem 260 (14):8272–8279Google Scholar
  57. Pasvol G, Weatherall DJ, Wilson RJ, Smith DH, Gilles HM (1976) Fetal haemoglobin and malaria. Lancet 1(7972):1269–1272CrossRefGoogle Scholar
  58. Perutz MF (1989) Mechanisms of cooperativity and allosteric regulation in proteins. Q Rev Biophys 22(2):139–237CrossRefGoogle Scholar
  59. Poillon WN, Kim BC, Rodgers GP, Noguchi CT, Schechter AN (1993) Sparing effect of hemoglobin F and hemoglobin A2 on the polymerization of hemoglobin S at physiologic ligand saturations. Proc Natl Acad Sci U S A 90(11):5039–5043.  https://doi.org/10.1073/pnas.90.11.5039CrossRefPubMedPubMedCentralGoogle Scholar
  60. Poyart C, Bursaux E, Guesnon P, Teisseire B (1978) Chloride binding and the Bohr effect of human fetal erythrocytes and HbFII solutions. Pflugers Arch 376(2):169–175CrossRefGoogle Scholar
  61. Randhawa ZI, Jones RT, Lie-Injo LE (1984) Human hemoglobin Portland II (zeta 2 beta 2). Isolation and characterization of Portland hemoglobin components and their constituent globin chains. J Biol Chem 259 (11):7325–7330Google Scholar
  62. Ribeil JA, Hacein-Bey-Abina S, Payen E, Magnani A, Semeraro M, Magrin E, Caccavelli L, Neven B, Bourget P, El Nemer W, Bartolucci P, Weber L, Puy H, Meritet JF, Grevent D, Beuzard Y, Chretien S, Lefebvre T, Ross RW, Negre O, Veres G, Sandler L, Soni S, de Montalembert M, Blanche S, Leboulch P, Cavazzana M (2017) Gene Therapy in a Patient with Sickle Cell Disease. N Engl J Med 376(9):848–855.  https://doi.org/10.1056/NEJMoa1609677CrossRefPubMedGoogle Scholar
  63. Sankaran VG, Menne TF, Xu J, Akie TE, Lettre G, Van Handel B, Mikkola HK, Hirschhorn JN, Cantor AB, Orkin SH (2008) Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science 322(5909):1839–1842.  https://doi.org/10.1126/science.1165409CrossRefPubMedGoogle Scholar
  64. Sankaran VG, Xu J, Orkin SH (2010) Advances in the understanding of haemoglobin switching. Br J Haematol 149(2):181–194.  https://doi.org/10.1111/j.1365-2141.2010.08105.xCrossRefPubMedPubMedCentralGoogle Scholar
  65. Scheepens A, Mould R, Hofmann O, Brittain T (1995) Some effects of post-translational N-terminal acetylation of the human embryonic zeta globin protein. Biochem J 310(Pt 2):597–600CrossRefGoogle Scholar
  66. Schroeder WA, Huisman TH, Shelton JR, Shelton JB, Kleihauer EF, Dozy AM, Robberson B (1968) Evidence for multiple structural genes for the gamma chain of human fetal hemoglobin. Proc Natl Acad Sci U S A 60(2):537–544CrossRefGoogle Scholar
  67. Shear HL, Grinberg L, Gilman J, Fabry ME, Stamatoyannopoulos G, Goldberg DE, Nagel RL (1998) Transgenic mice expressing human fetal globin are protected from malaria by a novel mechanism. Blood 92(7):2520–2526CrossRefGoogle Scholar
  68. Simon MC, Keith B (2008) The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol 9(4):285–296.  https://doi.org/10.1038/nrm2354CrossRefPubMedPubMedCentralGoogle Scholar
  69. Stamatoyannopoulos G, Grosveld F (2001) Hemoglobin switching. In: Majerus PW, Perlmutter RM, Varmus H (eds) Stamatoyannopoulos G. The molecular basis of blood diseases. W.B. Saunders Co., Philadelphia, PAGoogle Scholar
  70. Steinberg MH, Chui DH, Dover GJ, Sebastiani P, Alsultan A (2014) Fetal hemoglobin in sickle cell anemia: a glass half full? Blood 123(4):481–485.  https://doi.org/10.1182/blood-2013-09-528067CrossRefPubMedGoogle Scholar
  71. Sutherland-Smith AJ, Baker HM, Hofmann OM, Brittain T, Baker EN (1998) Crystal structure of a human embryonic haemoglobin: the carbonmonoxy form of Gower II (alpha2 epsilon2) haemoglobin at 2.9 A resolution. J Mol Biol 280 (3):475–484Google Scholar
  72. Telen MJ, Malik P, Vercellotti GM (2019) Therapeutic strategies for sickle cell disease: towards a multi-agent approach. Nat Rev Drug Discov 18(2):139–158.  https://doi.org/10.1038/s41573-018-0003-2CrossRefPubMedPubMedCentralGoogle Scholar
  73. van der Ploeg LH, Flavell RA (1980) DNA methylation in the human gamma delta beta-globin locus in erythroid and nonerythroid tissues. Cell 19(4):947–958.  https://doi.org/10.1016/0092-8674(80)90086-0CrossRefPubMedGoogle Scholar
  74. Wood WG (1976) Haemoglobin synthesis during human fetal development. Br Med Bull 32(3):282–287CrossRefGoogle Scholar
  75. Yagami T, Ballard BT, Padovan JC, Chait BT, Popowicz AM, Manning JM (2002) N-terminal contributions of the gamma-subunit of fetal hemoglobin to its tetramer strength: remote effects at subunit contacts. Protein Sci 11(1):27–35.  https://doi.org/10.1110/ps.30602CrossRefPubMedPubMedCentralGoogle Scholar
  76. Zimmerman JK, Ackers GK (1971) Molecular sieve studies of interacting protein systems. X. Behavior of small zone profiles for reversibly self-associating solutes. J Biol Chem 246 (23):7289–7292Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • James M. Manning
    • 1
    Email author
  • Lois R. Manning
    • 1
  • Antoine Dumoulin
    • 2
  • Julio C. Padovan
    • 3
  • Brian Chait
    • 3
  1. 1.Department of BiologyNortheastern UniversityBostonUSA
  2. 2.Department of DevelopabilityPierre Fabre Research CentreCastresFrance
  3. 3.Laboratory of Gaseous Ion ChemistryRockefeller UniversityNew YorkUSA

Personalised recommendations