Advertisement

Verifiable Homomorphic Tallying for the Schulze Vote Counting Scheme

  • Thomas Haines
  • Dirk Pattinson
  • Mukesh TiwariEmail author
Conference paper
  • 25 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12031)

Abstract

The encryption of ballots is crucial to maintaining integrity and anonymity in electronic voting schemes. It enables, amongst other things, each voter to verify that their encrypted ballot has been recorded as cast, by checking their ballot against a bulletin board.

We present a verifiable homomorphic tallying scheme for the Schulze method that allows verification of the correctness of the count—on the basis of encrypted ballots—that only reveals the final tally. We achieve verifiability by using zero knowledge proofs for ballot validity and honest decryption of the final tally. Our formalisation takes places inside the Coq theorem prover and is based on an axiomatisation of cryptogtaphic primitives, and our main result is the correctness of homomorphic tallying. We then instantiate these primitives using an external library and show the feasibility of our approach by means of case studies.

References

  1. 1.
    Aguillon, J.: OCaml \(\leftrightarrow \) Java Interface. https://github.com/Julow/ocaml-java. Accessed 29 April 2019
  2. 2.
    Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 263–280. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_17CrossRefGoogle Scholar
  3. 3.
    Ben-Or, M., et al.: Everything provable is provable in zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 37–56. Springer, New York (1990).  https://doi.org/10.1007/0-387-34799-2_4CrossRefGoogle Scholar
  4. 4.
    Benaloh, J., Moran, T., Naish, L., Ramchen, K., Teague, V.: Shuffle-sum: coercion-resistant verifiable tallying for STV voting. IEEE Trans. Inf. Forensics Secur. 4(4), 685–698 (2009)CrossRefGoogle Scholar
  5. 5.
    Bernhard, M., et al.: Public evidence from secret ballots. In: Krimmer, R., Volkamer, M., Braun Binder, N., Kersting, N., Pereira, O., Schürmann, C. (eds.) E-Vote-ID 2017. LNCS, vol. 10615, pp. 84–109. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68687-5_6CrossRefGoogle Scholar
  6. 6.
    Bertot, Y., Castéran, P., Huet, G., Paulin-Mohring, C.: Interactive theorem proving and program development: Coq’Art : the calculus of inductive constructions. Texts in theoretical computer science. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-662-07964-5CrossRefGoogle Scholar
  7. 7.
    Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993).  https://doi.org/10.1007/3-540-48071-4_7CrossRefGoogle Scholar
  8. 8.
    de Marneffe, O., Pereira, O., Quisquater, J.-J.: Electing a university president using open-audit voting: analysis of real-world use of Helios. In: Jefferson, D., Hall, J.L., Moran, T., (ed.) Proceedings of the EVT/WOTE 2009. USENIX Association (2009)Google Scholar
  9. 9.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985).  https://doi.org/10.1007/3-540-39568-7_2CrossRefGoogle Scholar
  10. 10.
    Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity for all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729 (1991)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems (extended abstract). In: STOC, pp. 291–304. ACM (1985)Google Scholar
  12. 12.
    Hirt, M., Sako, K.: Efficient receipt-free voting based on homomorphic encryption. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 539–556. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-45539-6_38CrossRefGoogle Scholar
  13. 13.
    Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implementation of ML. In: Jagannathan, S., Sewell, P., (eds.) Proceedings of the POPL 2014, pp. 179–192. ACM (2014)Google Scholar
  14. 14.
    Küsters, R., Truderung, T., Vogt, A.: Accountability: definition and relationship to verifiability. In: ACM Conference on Computer and Communications Security, pp. 526–535. ACM (2010)Google Scholar
  15. 15.
    Küsters, R., Truderung, T., Vogt, A.: Clash attacks on the verifiability of e-voting systems. In: IEEE Symposium on Security and Privacy, pp. 395–409. IEEE Computer Society (2012)Google Scholar
  16. 16.
    Letouzey, P.: A new extraction for Coq. In: Geuvers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, pp. 200–219. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-39185-1_12CrossRefzbMATHGoogle Scholar
  17. 17.
    Locher, P., Haenni, R.: A lightweight implementation of a shuffle proof for electronic voting systems. In: Jahrestagung der Gesellschaft für Informatik, Informatik 2014, Big Data - Komplexität meistern, 22–26 September 2014, vol. 44, pp. 1391–1400, Stuttgart (2014)Google Scholar
  18. 18.
    Parsovs, A.: Homomorphic tallying for the estonian internet voting system. IACR Cryptology ePrint Archive 2016, 776 (2016)Google Scholar
  19. 19.
    Pattinson, D., Schürmann, C.: Vote counting as mathematical proof. In: Pfahringer, B., Renz, J. (eds.) AI 2015. LNCS (LNAI), vol. 9457, pp. 464–475. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26350-2_41CrossRefGoogle Scholar
  20. 20.
    Pattinson, D., Tiwari, M.: Schulze voting as evidence carrying computation. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP 2017. LNCS, vol. 10499, pp. 410–426. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66107-0_26CrossRefGoogle Scholar
  21. 21.
    Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992).  https://doi.org/10.1007/3-540-46766-1_9CrossRefGoogle Scholar
  22. 22.
    Rivest, R.L.: On the notion of software independence’ in voting systems. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 366(1881), 3759–3767 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Rivest, R.L., Shen, E.: An optimal single-winner preferential voting system based on game theory. In: Conitzer, V., Rothe, J., (eds.) Proceedings of the COMSOC 2010. Duesseldorf University Press (2010)Google Scholar
  24. 24.
    Schulze, M.: A new monotonic, clone-independent, reversal symmetric, and condorcet-consistent single-winner election method. Soc. Choice Welfare 36(2), 267–303 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Terelius, B., Wikström, D.: Proofs of restricted shuffles. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 100–113. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-12678-9_7CrossRefGoogle Scholar
  26. 26.
    Wikström, D.: A commitment-consistent proof of a shuffle. In: Boyd, C., González Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 407–421. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02620-1_28CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.NTNUTrondheimNorway
  2. 2.Research School of Computer ScienceANUCanberraAustralia

Personalised recommendations