Advertisement

Uncertainty, Modeling and Safety Assurance: Towards a Unified Framework

  • Marsha ChechikEmail author
  • Sahar Kokaly
  • Mona Rahimi
  • Rick Salay
  • Torin Viger
Conference paper
  • 28 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12031)

Abstract

Uncertainty occurs naturally in software systems, including those that are model-based. When such systems are safety-critical, they need to be assured, e.g., by arguing that the system satisfies its safety goals. But how can we rigorously reason about assurance in the presence of uncertainty? In this paper, we propose a vision for a framework for managing uncertainty in assurance cases for software systems, and in particular, for model-based software systems, by systematically identifying, assessing and addressing it. We also discuss a set of challenges that need to be addressed to realize this framework.

References

  1. 1.
    GSN, Goal Structuring Notation Working Group, GSN Community Standard Version 1 (2011). http://www.goalstructuringnotation.info/
  2. 2.
    Burgueño, L., Bertoa, M.F., Moreno, N., Vallecillo, A.: Expressing confidence in models and in model transformation elements. In: Proceedings of MODELS 2018, pp. 57–66 (2018)Google Scholar
  3. 3.
    Dalal, S.R., et al.: Model-based testing in practice. In: Proceedings of the ICSE 1999, pp. 285–294 (1999)Google Scholar
  4. 4.
    Blazy, B., DeLine, A., Frey, B., Miller, M.: Software Requirements Specification (SRS) lane management system. Michigan State University (2014)Google Scholar
  5. 5.
    ISO 26262: Road vehicles - functional safety. International Organization for Standardization, 1st version (2011)Google Scholar
  6. 6.
    Ramirez, A.J., Jensen, A.C., Cheng, B.H.: A taxonomy of uncertainty for dynamically adaptive systems. In: Proceedings of the SEAMS 2012, pp. 99–108 (2012)Google Scholar
  7. 7.
    Zhang, M., Selic, B., Ali, S., Yue, T., Okariz, O., Norgren, R.: Understanding uncertainty in cyber-physical systems: a conceptual model. In: Wąsowski, A., Lönn, H. (eds.) ECMFA 2016. LNCS, vol. 9764, pp. 247–264. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-42061-5_16CrossRefGoogle Scholar
  8. 8.
    Mayerhofer, T., Wimmer, M., Vallecillo, A.: Adding uncertainty and units to quantity types in software models. In: Proceedings of the SLE 2016, pp. 118–131 (2016)Google Scholar
  9. 9.
    Bertoa, M.F., Moreno, N., Barquero, G., Burgueño, L., Troya, J., Vallecillo, A.: Expressing measurement uncertainty in OCL/UML datatypes. In: Pierantonio, A., Trujillo, S. (eds.) ECMFA 2018. LNCS, vol. 10890, pp. 46–62. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-92997-2_4CrossRefGoogle Scholar
  10. 10.
    Hawkins, R., Kelly, T., Knight, J., Graydon, P.: A new approach to creating clear safety arguments. In: Dale, C., Anderson, T. (eds.) Advances in Systems Safety, pp. 3–23. Springer, London (2011).  https://doi.org/10.1007/978-0-85729-133-2_1CrossRefGoogle Scholar
  11. 11.
    Holzmann, G.J.: Mars code. Commun. ACM 57(2), 64–73 (2014)CrossRefGoogle Scholar
  12. 12.
    Cârlan, C., Ratiu, D., Schätz, B.: On using results of code-level bounded model checking in assurance cases. In: Skavhaug, A., Guiochet, J., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2016. LNCS, vol. 9923, pp. 30–42. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45480-1_3CrossRefGoogle Scholar
  13. 13.
    Mens, T., Van Gorp, P.: A taxonomy of model transformation. Electron. Notes Theoret. Comput. Sci. 152, 125–142 (2006)CrossRefGoogle Scholar
  14. 14.
    Salay, R., Famelis, M., Chechik, M.: Language independent refinement using partial modeling. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 224–239. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28872-2_16CrossRefGoogle Scholar
  15. 15.
    Famelis, M., Salay, R., Chechik, M.: Partial models: towards modeling and reasoning with uncertainty. In: Proceedings of the ICSE 2012, pp. 573–583 (2012)Google Scholar
  16. 16.
    Salay, R., Chechik, M., Horkoff, J., Di Sandro, A.: Managing requirements uncertainty with partial models. J. Requirements Eng. 18(2), 107–128 (2013)CrossRefGoogle Scholar
  17. 17.
    Eramo, R., Pierantonio, A., Rosa, G.: Managing uncertainty in bidirectional model transformations. In: Proceedings of the SLE 2015, pp. 49–58 (2015)Google Scholar
  18. 18.
    Bucaioni, A., Cicchetti, A., Ciccozzi, F., Mubeen, S., Pierantonio, A., Sjödin, M.: Handling uncertainty in automatically generated implementation models in the automotive domain. In: Proceedings of the SEAA 2016, pp. 173–180 (2016)Google Scholar
  19. 19.
    Maksimov, M., Fung, N.L.S., Kokaly, S., Chechik, M.: Two decades of assurance case tools: a survey. In: Gallina, B., Skavhaug, A., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2018. LNCS, vol. 11094, pp. 49–59. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-99229-7_6CrossRefGoogle Scholar
  20. 20.
    Maksimov, M., Kokaly, S., Chechik, M.: A survey of tool-supported assurance case assessment techniques. ACM Comput. Surv. 52, 1–34 (2019)CrossRefGoogle Scholar
  21. 21.
    Luo, Y., van den Brand, M., Li, Z., Saberi, A.K.: A Systematic approach and tool support for GSN-based safety case assessment. J. Syst. Archit. 76, 1–16 (2017)CrossRefGoogle Scholar
  22. 22.
    Bloomfield, R., Bishop, P.: Safety and assurance cases: past, present and possible future-an adelard perspective. In: Dale, C., Anderson, T. (eds.) Making Systems Safer, pp. 51–67. Springer, London (2010).  https://doi.org/10.1007/978-1-84996-086-1_4CrossRefGoogle Scholar
  23. 23.
    Czarnecki, K., Salay, R.: Towards a framework to manage perceptual uncertainty for safe automated driving. In: Gallina, B., Skavhaug, A., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2018. LNCS, vol. 11094, pp. 439–445. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-99229-7_37CrossRefGoogle Scholar
  24. 24.
    Famelis, M., Chechik, M.: Managing design-time uncertainty. Softw. Syst. 18(2), 1249–1284 (2019)CrossRefGoogle Scholar
  25. 25.
    Kokaly, S., Salay, R., Sabetzadeh, M., Chechik, M., Maibaum, T.: Model management for regulatory compliance: a position paper. In: Proceedings of the MiSE 2016, pp. 74–80 (2016)Google Scholar
  26. 26.
    Kokaly, S., Salay, R., Cassano, V., Maibaum, T., Chechik, M.: A model management approach for assurance case reuse due to system evolution. In: Proceedings of the MODELS 2016, pp. 196–206 (2016)Google Scholar
  27. 27.
    Famelis, M., Salay, R., Di Sandro, A., Chechik, M.: Transformation of models containing uncertainty. In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS, vol. 8107, pp. 673–689. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41533-3_41CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Marsha Chechik
    • 1
    Email author
  • Sahar Kokaly
    • 1
  • Mona Rahimi
    • 1
  • Rick Salay
    • 1
  • Torin Viger
    • 1
  1. 1.University of TorontoTorontoCanada

Personalised recommendations