Advertisement

Proof of Concept of Blockchain Integration in P2P Lending for Developing Countries

  • Fatou Ndiaye MbodjiEmail author
  • Gervais Mendy
  • Ahmath Bamba Mbacke
  • Samuel Ouya
Conference paper
  • 7 Downloads
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 311)

Abstract

Blockchain is depicted as a promising technology for fintech notably in developing countries. That’s why, it’s important to be interested in it, so as to know how to realize these probables blockchain’s benefits. It presents a diversity of choices that impact on results in various ways. Studies have focused on fintech services business models such as P2P lending, others on the blockchain impact on finance, some even particularized in the case of developing countries. In these areas, a massive penetration of mobile phones is noted. It is in this context that fits this present study. In this paper we study the feasibility of a P2P lending platform based on blockchain and adapted to developing countries. The main contribution made by this article is: we developed a protocol and a business model of Peer-to-Peer (P2P) lending suitable to developing countries and accessible via mobile phone. The protocol integrates a service against the diversion of objectives which is based on smart contract.

Keywords

Blockchain Fintech Developing countries P2P lending Smart contracts 

References

  1. 1.
    Tapscott, A., Tapscott, D.: How blockchain is changing finance. Harvard Bus. Rev. 1(9), 2–5 (2017)Google Scholar
  2. 2.
    Lee, I., Shin, Y.J.: Fintech: ecosystem, business models, investment decisions, and challenges. Bus. Horiz. 61(1), 35–46 (2018).  https://doi.org/10.1016/j.bushor.2017.09.003CrossRefGoogle Scholar
  3. 3.
    Gomber, P., Kauffman, R.J., Parker, C., Weber, B.W.: On the fintech revolution: interpreting the forces of innovation, disruption, and transformation in financial services. J. Manag. Inf. Syst. 35(1), 220–265 (2018).  https://doi.org/10.1080/07421222.2018.1440766CrossRefGoogle Scholar
  4. 4.
    Jack, W., Suri, T.: Mobile Money: The Economics of M-PESA (2011).  https://doi.org/10.3386/w16721
  5. 5.
    Swan, M.: Blockchain for business: next-generation enterprise artificial intelligence systems. In: Blockchain Technology: Platforms, Tools and Use Cases, pp. 121–162 (2018).  https://doi.org/10.1016/bs.adcom.2018.03.013
  6. 6.
  7. 7.
    Muzammal, M., Qu, Q., Nasrulin, B.: Renovating blockchain with distributed databases: an open source system. Future Gen. Comput. Syst. 90, 105–117 (2019).  https://doi.org/10.1016/j.future.2018.07.042CrossRefGoogle Scholar
  8. 8.
    Duchenne, J.: Blockchain and Smart Contracts. Transforming Climate Finance and Green Investment with Blockchains, pp. 303–317 (2018).  https://doi.org/10.1016/b978-0-12-814447-3.00022-7
  9. 9.
    Phadermrod, B., Crowder, R.M., Wills, G.B.: Importance-performance analysis based SWOT analysis. Int. J. Inf. Manag. (2016).  https://doi.org/10.1016/j.ijinfomgt.2016.03.009CrossRefGoogle Scholar
  10. 10.
    Patwardhan, A.: Financial inclusion in the digital age. Handb. Blockchain Digit. Finance Incl. 1, 57–89 (2018).  https://doi.org/10.1016/b978-0-12-810441-5.00004-xCrossRefGoogle Scholar
  11. 11.
    Lashitew, A.A., van Tulder, R., Liasse, Y.: Mobile phones for financial inclusion: what explains the diffusion of mobile money innovations? Res. Policy (2019).  https://doi.org/10.1016/j.respol.2018.12.010CrossRefGoogle Scholar
  12. 12.
    Larios-Hernández, G.J.: Blockchain entrepreneurship opportunity in the practices of the unbanked. Bus. Horiz. 60(6), 865–874 (2017).  https://doi.org/10.1016/j.bushor.2017.07.012CrossRefGoogle Scholar
  13. 13.
    Viriyasitavat, W., Hoonsopon, D.: Blockchain characteristics and consensus in modern business processes. J. Industr. Inf. Integr. (2018).  https://doi.org/10.1016/j.jii.2018.07.004CrossRefGoogle Scholar
  14. 14.
    Treleaven, P., Brown, R.G., Yang, D.: Blockchain technology in finance. Computer 50(9) (2017).  https://doi.org/10.1109/MC.2017.3571047
  15. 15.
    World Bank Group. The Little Data Book on Financial Inclusion (2018). https://www.unsgsa.org/files/3815/2511/8893/LDB_Financial_Inclusion_2018.pdf
  16. 16.
    Mobile Money for the Unbanked Programme (2014). Le point sur le secteur: Les services financiers mobiles destinés aux personnes non bancarisées en 2014Google Scholar
  17. 17.
    Kursh, S.R., Gold, N.A.: Adding fintech and blockchain to your curriculum. Bus. Educ. Innov. J. http://www.beijournal.com/images/V8N2_final.pdf#page=6
  18. 18.
    Gai, K., Qiu, M., Sun, X.: A survey on FinTech. J. Netw. Comput. Appl.  https://doi.org/10.1016/j.jnca.2017.10.011
  19. 19.
    Meagher, P.: Cadre réglementaire pour les services financiers numériques en Côte d’Ivoire Etude diagnostique, Juillet 2017Google Scholar
  20. 20.
    Zins, A., Weill, L.: The determinants of financial inclusion in Africa. Rev. Dev. Finance 6(1), 46–57 (2016).  https://doi.org/10.1016/j.rdf.2016.05.00CrossRefGoogle Scholar
  21. 21.
    Business concept. BusinessDictionary.com, 21 May 2019. http://www.businessdictionary.com/definition/business-concept.html
  22. 22.
    Atlam, H.F., Wills, G.B.: Technical aspects of blockchain and IoT. Adv. Comput. (2018).  https://doi.org/10.1016/bs.adcom.2018.10.006CrossRefGoogle Scholar
  23. 23.
    Nguyen, G.-T., Kim, K.: A survey about consensus algorithms used in blockchain. J. Inf. Process. Syst. 14(1), 101–128 (2018). 1976–913X (Print). https://doi.org/10.3745/JIPS.01.0024
  24. 24.
    Omarini, A.: Peer-to-peer lending: business model analysis and the platform dilemma. Int. J. Finance Econ. Trade (IJFET) (2018). (Submitted 1st August 2018, Accepted 24th Sept)Google Scholar
  25. 25.
    Byanjankar, A., Heikkila, M., Mezei, J.: Predicting credit risk in peer-to-peer lending: a neural network approach. In: 2015 IEEE Symposium Series on Computational Intelligence (2015).  https://doi.org/10.1109/ssci.2015.109
  26. 26.
    Abdou, H.A., Pointon, J.: Credit scoring, statistical techniques and evaluation criteria: a review of the literature. Intell. Syst. Acc. Finance Manag. 18(2–3), 59–88 (2011).  https://doi.org/10.1002/isaf.325CrossRefGoogle Scholar
  27. 27.
    Bartoletti, M., Pompianu, L.: An empirical analysis of smart contracts: platforms, applications, and design patterns. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 494–509. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70278-0_31CrossRefGoogle Scholar
  28. 28.
    Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart contracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 164–186. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54455-6_8CrossRefGoogle Scholar
  29. 29.
    Wohrer, M., Zdun, U.: Smart contracts: security patterns in the ethereum ecosystem and solidity. In: 2018 International Workshop on Blockchain Oriented Software Engineering (IWBOSE) (2018).  https://doi.org/10.1109/iwbose.2018.8327565

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Authors and Affiliations

  • Fatou Ndiaye Mbodji
    • 1
    Email author
  • Gervais Mendy
    • 1
  • Ahmath Bamba Mbacke
    • 1
  • Samuel Ouya
    • 1
  1. 1.Ecole Supérieure Polytechnique (ESP)/Université Cheikh Anta Diop de Dakar (UCAD)DakarSenegal

Personalised recommendations