Advertisement

Yield Estimation Techniques Related Work

  • António Manuel Lourenço Canelas
  • Jorge Manuel Correia Guilherme
  • Nuno Cavaco Gomes Horta
Chapter
  • 26 Downloads

Abstract

The aggressive shrinking of devices, brought by new CMOS technology nodes, makes that any small process variations induce a larger impact on circuit devices behavior. Transistors having less than one hundred atoms per channel region or any minor variation in the dopant implantation may lead to increasing mismatch problems (Wirnshofer, Variation-Aware Adaptive Voltage Scaling for Digital CMOS Circuits, Springer, Dordrecht, 2013). Therefore, variability analysis has a critical role in order to predict the undesirable effects caused by process variations. Different techniques have been proposed to estimate the impact of variations in circuit performances at early stages of the analog design flow. In this chapter, the most relevant techniques in yield estimation are detailed. Also, several automatic analog IC sizing techniques considering variability effects are discussed. At the end of this chapter, the yield estimation and variation-aware techniques adopted by commercial EDA tools are presented.

Keywords

Analog IC yield estimation Monte Carlo analysis Design centering Parametric yield 

References

  1. 1.
    H.E. Graeb, Analog Design Centering and Sizing (Springer, Dordrecht, 2007)Google Scholar
  2. 2.
    A. Singhee, R.A. Rutenbar, Why quasi-Monte Carlo is better than Monte Carlo or Latin hypercube sampling for statistical circuit analysis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(11), 1763–1776 (2010)CrossRefGoogle Scholar
  3. 3.
    B. Liu, F.V. Fernandez, G.G.E. Gielen, Efficient and accurate statistical analog yield optimization and variation-aware circuit sizing based on computational intelligence techniques. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 30(6), 793–805 (2011)CrossRefGoogle Scholar
  4. 4.
    Y.-C. Ho, An explanation of ordinal optimization: Soft computing for hard problems. Inf. Sci. 113(3–4), 169–192 (1999)MathSciNetCrossRefGoogle Scholar
  5. 5.
    I. Guerra-Gomez, E. Tlelo-Cuautle, L.G. de la Fraga, OCBA in the yield optimization of analog integrated circuits by evolutionary algorithms, in 2015 IEEE Int. Symp. Circuits Syst. (ISCAS), Lisbon, 2015Google Scholar
  6. 6.
    K. Deb, R. Agrawal, Simulated binary crossover for continuous search space. Complex Syst. 9(2), 115–148 (1995)MathSciNetzbMATHGoogle Scholar
  7. 7.
    E. Afacan, G. Berkol, A.E. Pusane, G. Dündar, F. Başkaya, Adaptive sized Quasi-Monte Carlo based yield aware analog circuit optimization tool, in 2014 5th Eur. Workshop on CMOS Variability (VARI), Palma de Mallorca, 2014Google Scholar
  8. 8.
    E. Afacan, G. Berkol, A.E. Pusane, G. Dündar, F. Başkaya, A hybrid Quasi Monte Carlo method for yield aware analog circuit sizing tool, in 2015 Des. Automat. Test Eur. Conf. Exhibition (DATE), Grenoble, 2015Google Scholar
  9. 9.
    H. Niederreiter, Constructions of (t,m,s)-nets and (t,s)-sequences. Finite Fields Appl. 11(3), 578–600 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    E. Afacan, G. Berkol, G. Dundar, A.E. Pusane, F. Baskaya, An analog circuit synthesis tool based on efficient and reliable yield estimation. Microelectron. J. 54, 14–22 (2016)CrossRefGoogle Scholar
  11. 11.
    M. Pak, F.V. Fernandez, G. Dundar, Comparison of QMC-based yield-aware pareto front techniques for multi-objective robust analog synthesis. Integration VLSI J. 55, 357–365 (2016)CrossRefGoogle Scholar
  12. 12.
    M. Qazi, M. Tikekar, L. Dolecek, D. Shah, A. Chandrakasan, Loop flattening & spherical sampling: highly efficient model reduction techniques for SRAM yield analysis, in 2010 Des. Autom. Test Eur. Conf. Exhibition (DATE), Dresden, 2010Google Scholar
  13. 13.
    E. Yilmaz, S. Ozev, Adaptive-learning-based importance sampling for analog circuit DPPM estimation. IEEE Des. Test 32(1), 36–43 (2015)Google Scholar
  14. 14.
    R. Kanj, R. Joshi, S. Nassif, Mixture importance sampling and its application to the analysis of SRAM designs in the presence of rare failure events, in 2006 43rd ACM/IEEE Design Automat. Conf., San Francisco, CA, 2006Google Scholar
  15. 15.
    T. McConaghy, K. Breen, J. Dyck, A. Gupta, Variation-Aware Design of Custom Integrated Circuits: A Hands-on Field Guide (Springer, New York, 2013)CrossRefGoogle Scholar
  16. 16.
    J. Yao, Z. Ye, Y. Wang, Importance boundary sampling for SRAM yield analysis with multiple failure regions. IEEE Trans. Comput. Aided Des. Integr. Syst. 33(3), 384–396 (2014)CrossRefGoogle Scholar
  17. 17.
    M. Wang, C. Yan, X. Li, D. Zhou, X. Zeng, High-dimensional and multiple-failure-region importance sampling for SRAM yield analysis. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(3), 806–819 (2017)CrossRefGoogle Scholar
  18. 18.
    S. Sun, X. Li, H. Liu, K. Luo, B. Gu, Fast statistical analysis of rare circuit failure events via scaled-sigma sampling for high-dimensional variation space. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(7), 1096–1109 (2015)CrossRefGoogle Scholar
  19. 19.
    C.C. Kuo, W.Y. Hu, Y.H. Chen, J.F. Kuan, Y.K. Cheng, Efficient trimmed-sample Monte Carlo methodology and yield-aware design flow for analog circuits, in DAC Des. Autom. Conf., San Francisco, CA, 2012Google Scholar
  20. 20.
    O. Okobiah, S.P. Mohanty, E. Kougianos, Fast statistical process variation analysis using universal Kriging metamodeling: a PLL example, in 2013 IEEE 56th Int. Midwest Symp. Circuits Syst. (MWSCAS), Columbus, OH, 2013Google Scholar
  21. 21.
    E. Felt, S. Zanella, C. Guardiani, A. Sangiovanni-Vincentelli, Hierarchical statistical characterization of mixed-signal circuits using, in Proc. Int. Conf. Comput. Aided Des., San Jose, CA, 1996Google Scholar
  22. 22.
    R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Wiley Series in Probability and Statistics, 4th edn. (Wiley Inc. Publications, Hoboken, NJ, 2016)zbMATHGoogle Scholar
  23. 23.
    X. Li, W. Zhang, F. Wang, Large-scale statistical performance modeling of analog and mixed-signal circuits, in Proc. IEEE 2012 Custom Integr. Circuits Conf., San Jose, CA, 2012Google Scholar
  24. 24.
    Á. Bűrmen, H. Habal, Computing worst-case performance and yield of analog integrated circuits by means of mesh adaptive direct search. J. Microelectron. Electron. Comp. Mater. 45(2), 160–170 (2015)Google Scholar
  25. 25.
    X. Pan, H. Graeb, Reliability analysis of analog circuits using quadratic lifetime worst-case distance prediction, in IEEE Custom Integrated Circuits Conf. 2010, San Jose, CA, 2010Google Scholar
  26. 26.
    E. Sciacca, S. Spinella, A.M. Anile, Possibilistic worst case distance and applications to circuit sizing, in Theoretical Advances and Applications of Fuzzy Logic and Soft Computing, (Springer, Berlin, 2007), pp. 287–295CrossRefGoogle Scholar
  27. 27.
    L. Opalski, Remarks on statistical design centering. Int. J. Electron. Telecommun. 57(2), 159–167 (2011)CrossRefGoogle Scholar
  28. 28.
    R. Martins, N. Lourenço, A. Canelas, N. Horta, Stochastic-based placement template generator for analog IC layout-aware synthesis. Integration VLSI J. 58, 485–495 (2017)CrossRefGoogle Scholar
  29. 29.
    D. Ghai, S.P. Mohanty, E. Kougianos, Design of parasitic and process-variation aware nano-CMOS RF circuits: a VCO case study. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 17(9), 1339–1342 (2009)CrossRefGoogle Scholar
  30. 30.
    S.P. Mohanty, E. Kougianos, Incorporating manufacturing process variation awareness in fast design optimization of nanoscale CMOS VCOs. IEEE Trans. Semicond. Manuf. 27(1), 22–31 (2014)CrossRefGoogle Scholar
  31. 31.
    Solido Design Automation, Mentor a Siemens Business, Technology|Solido Design Automation High Sigma Monte Carlo. [Online]. Available: https://www.solidodesign.com/products/variation-designer/technology/#high-sigma-monte-carlo. Accessed 6 Nov 2018
  32. 32.
    Solido Design Automation, Mentor a Siemens Business, Technology|Solido Design Automation Fast Monte Carlo. [Online]. Available: https://www.solidodesign.com/products/variation-designer/technology/#fast-monte-carlo. Accessed 8 Nov 2018
  33. 33.
    MunEDA GmbH, muneda.com—Solutions Analysis Overview, 2018. [Online]. Available: https://www.muneda.com/solutions_analysis_overview.php. Accessed 9 Nov 2018
  34. 34.
    Synopsys, Inc., Reliability Analysis. [Online]. Available: https://www.synopsys.com/verification/ams-verification/reliability-analysis.html. Accessed 9 Nov 2018
  35. 35.
    Cadence Design Systems, Inc., Virtuoso Analog Design Environment Family, 2014. [Online]. Available: https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/custom-ic-analog-rf-design/virtuoso-analog-design-fam-ds.pdf. Accessed 13 Sept 2018
  36. 36.
    Cadence Design Systems, Inc., Vituoso Variation Option. [Online]. Available: https://www.cadence.com/content/cadence-www/global/en_US/home/tools/custom-ic-analog-rf-design/circuit-design/virtuoso-variation-option.html. Accessed 9 Nov 2018
  37. 37.
    Cadence Design Systems, Inc., Accelerating Monte Carlo Analysis at Advanced Nodes, 2016. [Online]. Available: https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/custom-ic-analog-rf-design/monte-carlo-analysis-at-advanced-nodes-wp.pdf. Accessed 20 Jan 2018

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • António Manuel Lourenço Canelas
    • 1
  • Jorge Manuel Correia Guilherme
    • 2
  • Nuno Cavaco Gomes Horta
    • 1
  1. 1.Instituto Superior TécnicoInstituto de TelecomunicaçõesLisbonPortugal
  2. 2.Instituto Politécnico de TomarInstituto de TelecomunicaçõesLisbonPortugal

Personalised recommendations