Advertisement

Allowing IoT Devices Collaboration to Help Elderly in Their Daily Lives

  • Daniel Flores-MartinEmail author
  • Sergio Laso
  • Javier Berrocal
  • Carlos Canal
  • Juan M. Murillo
Conference paper
  • 48 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1185)

Abstract

Elderly people have the stereotype of being bad to technology, but they are one of the groups that can benefit the most from recent technological advances. The Internet of Things (IoT) is one of the new technologies that aims to facilitate people’s lives, automating tasks or allowing them to be carried out more easily. IoT smart devices provide an increasing number of ways for elderly people to stay active, independent and secure. In addition, the collaboration among smart devices increases the possibilities that the IoT offers, achieving that it can be more exploited. Unfortunately, this collaboration is not easy considering the different types of devices that exist in the market and the absence of communication standards. To mitigate this problem, solutions based on semantic web have shown promise, facilitating interoperability among different devices through the representation and the relationship of their information. In this paper, we propose a system that improves the interoperability among smart devices in the application domains of healthcare and smarthome by using semantic web and ontologies. This solution allows a proactive collaboration among smart devices that elderly people have around them regardless of the technology used, in order to increase their quality of life through more effective and efficient monitoring, and promoting actions associated with their needs.

Keywords

Internet of Things Elderly Healthcare Smarthome Semantic web Ontology 

Notes

Acknowledgments

This work was supported by the European Regional Development Fund (ERDF) and by 4IE project (0045-4IE-4-P) funded by the Interreg V-A España-Portugal (POCTEP) 2014-2020 program, by the Spanish Ministry of Science and Innovation through project RTI2018-094591-B-I00 (MINECO/FEDER, UE) and grant FPU17/02251, and by the Department of Economy and Infrastructure of the Government of Extremadura (GR18112, IB18030).

References

  1. 1.
    Statista: IoT: number of connected devices worldwide 2012–2025. https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/ (2016). Accessed 24 July 2019
  2. 2.
    Haluza, D., Jungwirth, D.: ICT and the future of health care: aspects of health promotion. Int. J. Med. Informatics 84(1), 48–57 (2015)CrossRefGoogle Scholar
  3. 3.
    Metcalf, D., Milliard, S.T., Gomez, M., Schwartz, M.: Wearables and the Internet of Things for health: wearable, interconnected devices promise more efficient and comprehensive health care. IEEE Pulse 7(5), 35–39 (2016)CrossRefGoogle Scholar
  4. 4.
    Barnaghi, P., Wang, W., Henson, C., Taylor, K.: Semantics for the Internet of Things: early progress and back to the future. Int. J. Semant. Web Inf. Syst. (IJSWIS) 8(1), 1–21 (2012)CrossRefGoogle Scholar
  5. 5.
    Elkhodr, M., Shahrestani, S., Cheung, H.: The Internet of Things: new interoperability, management and security challenges. arXiv preprint arXiv:1604.04824 (2016)
  6. 6.
    Guarino, N., Carrara, M., Giaretta, P.: An ontology of meta-level categories. In: Principles of Knowledge Representation and Reasoning, pp. 270–280. Elsevier (1994)Google Scholar
  7. 7.
    Hachem, S., Teixeira, T., Issarny, V.: Ontologies for the Internet of Things. In: Proceedings of the 8th Middleware Doctoral Symposium, p. 3. ACM (2011)Google Scholar
  8. 8.
    Gyrard, A., Serrano, M., Atemezing, G.A.: Semantic web methodologies, best practices and ontology engineering applied to Internet of Things. In: 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), pp. 412–417, December 2015Google Scholar
  9. 9.
    LOV4IoT: Linked open vocabularies for Internet of Things (lov4iot) ontology catalog - reusing domain knowledge expertise (2016). http://lov4iot.appspot.com/?p=ontologies. Accessed 22 July 2019
  10. 10.
    Rhayem, A., Mhiri, M.B.A., Salah, M.B., Gargouri, F.: Ontology-based system for patient monitoring with connected objects. Procedia Comput. Sci. 112, 683–692 (2017)CrossRefGoogle Scholar
  11. 11.
    Lasierra, N., Alesanco, A., Guillén, S., García, J.: A three stage ontology-driven solution to provide personalized care to chronic patients at home. J. Biomed. Inform. 46(3), 516–529 (2013)CrossRefGoogle Scholar
  12. 12.
    Moreno, P., Hernando, M., Gomez, E.: AALUMO: a user model ontology for ambient assisted living services supported in next-generation networks. In: Roa Romero, L. (ed.) XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013, pp. 1217–1220. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-00846-2_301CrossRefGoogle Scholar
  13. 13.
    Agarwal, R., et al.: Unified IoT ontology to enable interoperability and federation of testbeds. In: 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), pp. 70–75. IEEE (2016)Google Scholar
  14. 14.
    Daniele, L., Solanki, M., den Hartog, F., Roes, J.: Interoperability for smart appliances in the IoT world. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 21–29. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46547-0_3CrossRefGoogle Scholar
  15. 15.
    Arenas, M., Pérez, J.: Querying semantic web data with SPARQL. In: Proceedings of the Thirtieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 305–316. ACM (2011)Google Scholar
  16. 16.
    Azimi, I., Rahmani, A.M., Liljeberg, P., Tenhunen, H.: Internet of Things for remote elderly monitoring: a study from user-centered perspective. J. Ambient Intell. Humaniz. Comput. 8(2), 273–289 (2017)CrossRefGoogle Scholar
  17. 17.
    Pal, D., Funilkul, S., Charoenkitkarn, N., Kanthamanon, P.: Internet-of-Things and smart homes for elderly healthcare: an end user perspective. IEEE Access 6, 10483–10496 (2018)CrossRefGoogle Scholar
  18. 18.
    Jabbar, S., Ullah, F., Khalid, S., Khan, M., Han, K.: Semantic interoperability in heterogeneous IoT infrastructure for healthcare. In: Wireless Communications and Mobile Computing, vol. 2017 (2017)CrossRefGoogle Scholar
  19. 19.
    Gómez, J., Oviedo, B., Zhuma, E.: Patient monitoring system based on Internet of Things. Procedia Comput. Sci. 83, 90–97 (2016)CrossRefGoogle Scholar
  20. 20.
    Datta, S.K., Bonnet, C., Gyrard, A., Da Costa, R.P.F., Boudaoud, K.: Applying Internet of Things for personalized healthcare in smart homes. In: 2015 24th Wireless and Optical Communication Conference (WOCC), pp. 164–169. IEEE (2015)Google Scholar
  21. 21.
    Darshan, K., Anandakumar, K.: A comprehensive review on usage of Internet of Things (IoT) in healthcare system. In: 2015 International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT), pp. 132–136. IEEE (2015)Google Scholar
  22. 22.
    Maarala, A.I., Su, X., Riekki, J.: Semantic reasoning for context-aware Internet of Things applications. IEEE Internet Things J. 4(2), 461–473 (2017)CrossRefGoogle Scholar
  23. 23.
    Gyrard, A., Datta, S.K., Bonnet, C., Boudaoud, K.: Cross-domain Internet of Things application development: M3 framework and evaluation. In: 2015 3rd International Conference on Future Internet of Things and Cloud, pp. 9–16, August 2015Google Scholar
  24. 24.
    Kiljander, J., et al.: Semantic interoperability architecture for pervasive computing and Internet of Things. IEEE Access 2, 856–873 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Universidad de ExtremaduraBadajozSpain
  2. 2.Universidad de MálagaMálagaSpain

Personalised recommendations