Advertisement

Data Digitalisation in the Open-Pit Mining: Preliminary Results

  • J. DuarteEmail author
  • M. Fernanda Rodrigues
  • J. Santos Baptista
Chapter
  • 112 Downloads
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 277)

Abstract

The new technological era has been shaping all industries and its impact on Mining activity lead to the emergence of the Mining 4.0 concept. Even though cutting edge technology is currently being used, this keeps being one of the most hazardous sectors. Therefore the importance of using such tools to improve, not only the productive agendas but also the environmental and occupational safety. The purpose of this study is to provide the preliminary results regarding the types of digitalisation tools and their main intents. In order to do so, the PRISMA guidelines extension for Scoping Reviews was used to filter the results. In this first investigation phase, from the 6775 identified articles, only 24 met the expected inclusion criteria, providing rationale for the digitalisation methodologies and tools. It was verified that the most used tools have in its core geographic information systems, despite the growing trend regarding photogrammetry tools. Regardless of the usage, the studies were mostly trying to solve engineering issues related to slope stability (which can also be linked to safety) and environmental monitorisation, thus showing the importance of creating models to design these project components to perform adequate managing actions. With this study, the needed background to carry this project is launched and further studies will be added to try to determine which tools and what information is needed to execute a design project.

Keywords

Mining 4.0 Photogrammetry Geographic information systems 

References

  1. 1.
    Soleimani, H.: A new sustainable closed-loop supply chain model for mining industry considering fixed-charged transportation: a case study in a travertine quarry. Resour. Policy, pp. 1–11 (2018).  https://doi.org/10.1016/j.resourpol.2018.07.006
  2. 2.
    Francioni, M., Salvini, R., Stead, D., Giovannini, R., Riccucci, S., Vanneschi, C., Gulli, D.: An integrated remote sensing-GIS approach for the analysis of an open pit in the Carrara marble district, Italy: Slope stability assessment through kinematic and numerical methods. Comput. Geotech. 67, 46–63 (2015)Google Scholar
  3. 3.
    Verma, S., Chaudhari, S.: Safety of workers in Indian mines: study, analysis, and prediction. Saf. Health Work. 8, 267–275 (2017).  https://doi.org/10.1016/j.shaw.2017.01.001CrossRefGoogle Scholar
  4. 4.
    Bartnitzki, T.: Mining 4.0—importance of industry 4.0 for the raw materials sector. Min. Rep. 153, 25–31 (2017)Google Scholar
  5. 5.
    Kondela, J., Prekopová, M., Budinský, V., Pandula, B., Ďuriška, I.: The importance of seismic methods application for geological reconstruction of rockslide threatened open pit. J. Appl. Geophys. 159, 304–311 (2018).  https://doi.org/10.1016/j.jappgeo.2018.09.005CrossRefGoogle Scholar
  6. 6.
    Lindqvist, T., Skyttä, P., Koivisto, E., Häkkinen, T., Somervuori, P.: Delineating the network of brittle structures with geotechnical, structural and reflection seismic data, Kevitsa open pit, northern Finland. GeoResJ 13, 159–174 (2017).  https://doi.org/10.1016/j.grj.2017.04.004CrossRefGoogle Scholar
  7. 7.
    Lepine, I., Farrow, D.: 3D geological modelling of the Renard 2 kimberlite pipe, Quebec, Canada: from exploration to extraction. Mineral. Petrol. 112, 411–419 (2018).  https://doi.org/10.1007/s00710-018-0567-xCrossRefGoogle Scholar
  8. 8.
    Zelko, M., Spišák, J.: Changing the raw material industry through digitalization and informatization. In: Information Technology Human Values, Innovation and Economy, pp. 251–258 (2013)Google Scholar
  9. 9.
    Duarte, J., Rodrigues, F., Santos Baptista, J.: Data digitalisation in the mining industry—a scoping review protocol. Int. J. Occup. Environ. Saf. 3, 64–67 (2019).  https://doi.org/10.24840/2184-0954_003.001_0006
  10. 10.
    Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., Altman, D., Antes, G., Atkins, D., Barbour, V., Barrowman, N., Berlin, J.A., Clark, J., Clarke, M., Cook, D., D’Amico, R., Deeks, J.J., Devereaux, P.J., Dickersin, K., Egger, M., Ernst, E., Gøtzsche, P.C., Grimshaw, J., Guyatt, G., Higgins, J., Ioannidis, J.P.A., Kleijnen, J., Lang, T., Magrini, N., McNamee, D., Moja, L., Mulrow, C., Napoli, M., Oxman, A., Pham, B., Rennie, D., Sampson, M., Schulz, K.F., Shekelle, P.G., Tovey, D., Tugwell, P.: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6 (2009).  https://doi.org/10.1371/journal.pmed.1000097
  11. 11.
    Tricco, A.C., Lillie, E., Zarin, W., O’Brien, K.K., Colquhoun, H., Levac, D., Moher, D., Peters, M.D.J., Horsley, T., Weeks, L., Hempel, S., Akl, E.A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M.G., Garritty, C., Lewin, S., Godfrey, C.M., Macdonald, M.T., Langlois, E. V, Soares-Weiser, K., Moriarty, J., Clifford, T., Tuncalp, O., Straus, S.E.: PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann. Intern. Med. 169, 467–473 (2018).  https://doi.org/10.7326/M18-0850
  12. 12.
    Barakat, A., Baghdadi, M.E., Rais, J.: A GIS-based inventory of ornamental stone and aggregate operations in the Beni-Mellal Region (Morocco). Arab. J. Sci. Eng. 40, 2021–2031 (2015).  https://doi.org/10.1007/s13369-015-1672-3CrossRefGoogle Scholar
  13. 13.
    Kulatilake, P.H.S.W.: Biao Shu: prediction of rock mass deformations in three dimensions for a part of an Open Pit Mine and comparison with field deformation monitoring data. Geotech. Geol. Eng. 33, 1551–1568 (2015)CrossRefGoogle Scholar
  14. 14.
    Muzik, J., Vondráčková, T., Sitányiová, D., Plachý, J., Musílek, J.: Limestone quarry reserve estimation by laser scanning and GIS tools. Procedia Earth Planet. Sci. 15, 382–388 (2015).  https://doi.org/10.1016/j.proeps.2015.08.008CrossRefGoogle Scholar
  15. 15.
    Shahbazi, M., Sohn, G., Théau, J., Menard, P., Theau, J., Menard, P.: Development and evaluation of a UAV-photogrammetry system for precise 3D environmental modeling. Sensors (Switzerland) 15, 27493–27524 (2015).  https://doi.org/10.3390/s151127493CrossRefGoogle Scholar
  16. 16.
    Tong, X., Liu, X., Chen, P., Liu, S., Luan, K., Li, L., Liu, S., Liu, X., Xie, H., Jin, Y., Hong, Z.: Integration of UAV-based photogrammetry and terrestrial laser scanning for the three-dimensional mapping and monitoring of Open-Pit mine areas. Remote Sens. 7, 6635–6662 (2015)CrossRefGoogle Scholar
  17. 17.
    Wajs, J.: Research on surveying technology applied for DTM modelling and volume computation in open pit mines. Min. Sci. 22, 75–83 (2015).  https://doi.org/10.5277/msc152207CrossRefGoogle Scholar
  18. 18.
    Wężyk, P., Szostak, M., Krzaklewski, W., Pająk, M., Pierzchalski, M., Szwed, P., Hawryło, P., Ratajczak, M.: Landscape monitoring of post-industrial areas using LiDAR and GIS technology. Geod. Cartogr. 64, 125–137 (2015).  https://doi.org/10.1515/geocart-2015-0010CrossRefGoogle Scholar
  19. 19.
    Cardozo, N., Montes, C., Marín, D., Gutierrez, I., Palencia, A.: Structural analysis of the Tabaco anticline, Cerrejón open-cast coal mine, Colombia. South Am. J. Struct. Geol. 87, 115–133 (2016).  https://doi.org/10.1016/j.jsg.2016.04.010CrossRefGoogle Scholar
  20. 20.
    Horner, J., Naranjo, A., Weil, J.: Digital data acquisition and 3D structural modelling for mining and civil engineering—the La Colosa gold mining project, Colombia. Geomech. und Tunnelbau. 9, 52–57 (2016).  https://doi.org/10.1002/geot.201500046CrossRefGoogle Scholar
  21. 21.
    Basson, I., Lourens, P., Paetzold, H.-D., Thomas, S., Brazier, R., Molabe, P.: Structural analysis and 3D modelling of major mineralizing structures at the Phalaborwa copper deposit. Ore Geol. Rev. 83, 30–42 (2017).  https://doi.org/10.1016/j.oregeorev.2016.12.002CrossRefGoogle Scholar
  22. 22.
    Caudal, P., Grenon, M., Turmel, D., Locat, J.: Analysis of a large rock slope failure on the east wall of the LAB Chrysotile Mine in Canada: LiDAR monitoring and displacement analyses. Rock Mech. Rock Eng. 50, 807–824 (2017).  https://doi.org/10.1007/s00603-016-1145-3CrossRefGoogle Scholar
  23. 23.
    Esposito, G., Mastrorocco, G., Salvini, R., Oliveti, M., Starita, P.: Application of UAV photogrammetry for the multi-temporal estimation of surface extent and volumetric excavation in the Sa Pigada Bianca open-pit mine, Sardinia, Italy. Environ. Earth Sci. 76, 103 (16 pp.) (2017)Google Scholar
  24. 24.
    Jayanthu, S., Karthik, G.: Evaluation of stability of cutslopes in open cast metal mines using numerical modelling and field monitoring. Adv. Model. Anal. A. 79, 12–15 (2018)Google Scholar
  25. 25.
    Sayab, M., Aerden, D., Paananen, M., Saarela, P.: Virtual structural analysis of Jokisivu open pit using “structure-from-motion” Unmanned Aerial Vehicles (UAV) photogrammetry: implications for structurally-controlled gold deposits in Southwest Finland. Remote Sens. 10 (2018).  https://doi.org/10.3390/rs10081296
  26. 26.
    Sengupta, S., Krishna, A.P., Roy, I.: Slope failure susceptibility zonation using integrated remote sensing and GIS techniques: A case study over Jhingurdah open pit coal mine, Singrauli coalfield, India. J. Earth Syst. Sci. 127 (2008).  https://doi.org/10.1007/s12040-018-0982-8
  27. 27.
    Xiang, J., Chen, J., Sofia, G., Tian, Y., Tarolli, P.: Open-pit mine geomorphic changes analysis using multi-temporal UAV survey. Environ. Earth Sci. 77, 220 (18 pp.) (2018)Google Scholar
  28. 28.
    Creus, P.K., Basson, I.J., Koegelenberg, C.K., Ekkerd, J., de Graaf, P.J.H.H., Bester, M., Mokele, T.: 3D Fabric analysis of Venetia Mine, South Africa: using structural measurements and implicitly-modelled surfaces for improved pit slope design and risk management. J. African Earth Sci. 155, 137–150 (2019).  https://doi.org/10.1016/j.jafrearsci.2019.04.009CrossRefGoogle Scholar
  29. 29.
    Morales, M., Panthi, K.K., Botsialas, K.: Slope stability assessment of an open pit mine using three-dimensional rock mass modeling. Bull. Eng. Geol. Environ. 78, 1249–1264 (2019).  https://doi.org/10.1007/s10064-017-1175-4CrossRefGoogle Scholar
  30. 30.
    Morales, M., Panthi, K.K., Botsialas, K., Holmøy, K.H.: Development of a 3D structural model of a mine by consolidating different data sources. Bull. Eng. Geol. Environ. 78, 35–53 (2019).  https://doi.org/10.1007/s10064-017-1068-6CrossRefGoogle Scholar
  31. 31.
    Padró, J.-C.J.C.J.-C.J.C., Carabassa, V., Balagué, J., Brotons, L., Alcañiz, J.M., Pons, X.: Monitoring opencast mine restorations using Unmanned Aerial System (UAS) imagery. Sci. Total Environ. 657, 1602–1614 (2019).  https://doi.org/10.1016/j.scitotenv.2018.12.156
  32. 32.
    Vanneschi, C., Eyre, M., Venn, A., Coggan, J.S.: Investigation and modeling of direct toppling using a three-dimensional distinct element approach with incorporation of point cloud geometry. Landslides (2019).  https://doi.org/10.1007/s10346-019-01192-wCrossRefGoogle Scholar
  33. 33.
    Riquelme, A.J., Abellán, A., Tomás, R.: Discontinuity spacing analysis in rock masses using 3D point clouds. Eng. Geol. 195, 185–195 (2015).  https://doi.org/10.1016/j.enggeo.2015.06.009CrossRefGoogle Scholar
  34. 34.
    Passalacqua, P., Belmont, P., Staley, D.M., Simley, J.D., Arrowsmith, J.R., Bode, C.A., Crosby, C., DeLong, S.B., Glenn, N.F., Kelly, S.A., Lague, D., Sangireddy, H., Schaffrath, K., Tarboton, D.G., Wasklewicz, T., Wheaton, J.M.: Analyzing high resolution topography for advancing the understanding of mass and energy transfer through landscapes: a review. Earth-Sci. Rev. 148, 174–193 (2015).  https://doi.org/10.1016/j.earscirev.2015.05.012CrossRefGoogle Scholar
  35. 35.
    Uygucgil, H., Konuk, A.: Reserve estimation in multivariate mineral deposits using geostatistics and GIS. J. Min. Sci. 51, 993–1000 (2015).  https://doi.org/10.1134/S1062739115050186CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Associated Laboratory for Energy, Transports and Aeronautics (PROA/LAETA), Faculty of EngineeringUniversity of PortoPortoPortugal
  2. 2.RISCO, ANQIP, University of AveiroAveiroPortugal

Personalised recommendations