Advertisement

Autonomous RDF Stream Processing for IoT Edge Devices

  • Manh Nguyen-DucEmail author
  • Anh Le-Tuan
  • Jean-Paul Calbimonte
  • Manfred Hauswirth
  • Danh Le-Phuoc
Conference paper
  • 23 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12032)

Abstract

The wide adoption of increasingly cheap and computationally powerful single-board computers, has triggered the emergence of new paradigms for collaborative data processing among IoT devices. Motivated by the billions of ARM chips having been shipped as IoT gateways so far, our paper proposes a novel continuous federation approach that uses RDF Stream Processing (RSP) engines as autonomous processing agents. These agents can coordinate their resources to distribute processing pipelines by delegating partial workloads to their peers via subscribing continuous queries. Our empirical study in “cooperative sensing” scenarios with resourceful experiments on a cluster of Raspberry Pi nodes shows that the scalability can be significantly improved by adding more autonomous agents to a network of edge devices on demand. The findings open several new interesting follow-up research challenges in enabling semantic interoperability for the edge computing paradigm.

Keywords

Autonomous systems Stream processing Cooperative sensing Query federation 

Notes

Acknowledgements

This work was funded in part by the German Ministry for Education and Research as BBDC 2 - Berlin Big Data Center Phase 2 (ref. 01IS18025A), Irish Research Council under Grant Number GOIPG/2014/917, HES-SO RCSO ISNet grant 87057 (PROFILES), and Marie Skodowska-Curie Programme H2020-MSCA-IF-2014 (SMARTER project) under Grant No. 661180.

References

  1. 1.
    Balazinska, M., Balakrishnan, H., Stonebraker, M.: Contract-based load management in federated distributed systems. In: NSDI 2004 (2004)Google Scholar
  2. 2.
    Balduini, M., Della Valle, E., Tommasini, R.: SLD revolution: a cheaper, faster yet more accurate streaming linked data framework. In: ESWC (2017)Google Scholar
  3. 3.
    Barbieri, D.F., Braga, D., Ceri, S., Grossniklaus, M.: An execution environment for C-SPARQL queries. In: EDBT 2010 (2010)Google Scholar
  4. 4.
    Enabling mass iot connectivity as arm partners ship 100 billion chips. http://tiny.cc/uiefcz
  5. 5.
    Bröring, S., et al.: The big iot api-semantically enabling iot interoperability. IEEE Pervasive Comput. 17(4), 41–51 (2018)CrossRefGoogle Scholar
  6. 6.
    Calbimonte, J.-P., Corcho, O., Gray, A.J.G.: Enabling ontology-based access to streaming data sources. In: Patel-Schneider, P.F., et al. (eds.) ISWC 2010. LNCS, vol. 6496, pp. 96–111. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-17746-0_7CrossRefGoogle Scholar
  7. 7.
    Dell’Aglio, D., Della Valle, E., van Harmelen, F., Bernstein, A.: Stream reasoning: a survey and outlook. Data Sci. 1(1), 59–83 (2017)Google Scholar
  8. 8.
    Dell’Aglio, D., Phuoc, D.L., Le-Tuan, A., Ali, M.I., Calbimonte, J.-P.: On a web of data streams. In: DeSemWeb@ISWC (2017)Google Scholar
  9. 9.
    Grubenmann, T., Bernstein, A., Moor, D., Seuken, S.: Financing the web of data with delayed-answer auctions. In: WWW 2018 (2018)Google Scholar
  10. 10.
    Haller, A., et al.: The modular SSN ontology: a joint W3C and OGC standard specifying the semantics of sensors, observations, sampling, and actuation. Semant. Web 10(1), 9–32 (2019)CrossRefGoogle Scholar
  11. 11.
    Kaebisch, S., Kamiya, T., McCool, M., Charpenay, V.: Web of things (wot) thing description. W3C, W3C Candidate Recommendation (2019)Google Scholar
  12. 12.
    Le-Phuoc, D.: Operator-aware approach for boosting performance in RDF stream processing. J. Web Semant. 42, 38–54 (2017)CrossRefGoogle Scholar
  13. 13.
    Le-Phuoc, D.: Adaptive optimisation for continuous multi-way joins over rdf streams. In: Companion Proceedings of the the Web Conference 2018, WWW 2018, pp. 1857–1865 (2018)Google Scholar
  14. 14.
    Le-Phuoc, D., Dao-Tran, M., Le Van, C., Le Tuan, A., Manh Nguyen Duc, T.T.N., Hauswirth, M.: Platform-agnostic execution framework towards rdf stream processing. In: RDF Stream Processing Workshop at ESWC2015 (2015)Google Scholar
  15. 15.
    Le-Phuoc, D., Dao-Tran, M., Parreira, J.X., Hauswirth, M.: A native and adaptive approach for unified processing of linked streams and linked data. In: ISWC 2011, pp. 370–388 (2011)Google Scholar
  16. 16.
    Le-Phuoc, D., Quoc, H.N.M., Van, C.L., Hauswirth, M.: Elastic and scalable processing of linked stream data in the cloud. In: ISWC, pp. 280–297 (2013)Google Scholar
  17. 17.
    Le-Tuan, A., Hayes, C., Wylot, M., Le-Phuoc, D.: Rdf4led: An rdf engine for lightweight edge devices. In: IOT 2018 (2018)Google Scholar
  18. 18.
    Le-Tuan, A., Hingu, D., Hauswirth, M., Le-Phuoc, D.: Incorporating blockchain into rdf store at the lightweight edge devices. In: Semantic 2019 (2019)Google Scholar
  19. 19.
    Munir, A., Kansakar, P., Khan, S.U.: IFCIoT: integrated fog cloud iot a novel architectural paradigm for the future internet of things. IEEE Consum. Electron. Mag. 6(3), 74–82 (2017)CrossRefGoogle Scholar
  20. 20.
    Ren, X., Curé, O.: Strider: a hybrid adaptive distributed RDF stream processing engine. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 559–576. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68288-4_33CrossRefGoogle Scholar
  21. 21.
    Sakr, S., Wylot, M., Mutharaju, R., Le Phuoc, D., Fundulaki, I.: Processing of RDF Stream Data. Springer, Cham (2018)Google Scholar
  22. 22.
    Satyanarayanan, M.: The emergence of edge computing. Computer 50(1), 30–39 (2017)CrossRefGoogle Scholar
  23. 23.
    Smith, B.: Arm and intel battle over the mobile chip’s future. Computer 41(5), 15–18 (2008)CrossRefGoogle Scholar
  24. 24.
    Soldatos, J., et al.: Openiot: open source internet-of-things in the cloud. In: Interoperability and open-source solutions for the internet of things. Springer (2015)Google Scholar
  25. 25.
    Soursos, S., Žarko, I.P., Zwickl, P., Gojmerac, I., Bianchi, G., Carrozzo, G.: Towards the cross-domain interoperability of iot platforms. In: 2016 European Conference on Networks and Communications (EuCNC), pp. 398–402. IEEE (2016)Google Scholar
  26. 26.
    Tommasini, R., Calvaresi, D., Calbimonte, J.-P.: Stream reasoning agents: blue sky ideas track. In: AAMAS, pp. 1664–1680 (2019)Google Scholar
  27. 27.
    Tommasini, R., et al.: Vocals: vocabulary and catalog of linked streams. In: International Semantic Web Conference (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Manh Nguyen-Duc
    • 1
    Email author
  • Anh Le-Tuan
    • 1
    • 3
  • Jean-Paul Calbimonte
    • 4
  • Manfred Hauswirth
    • 1
    • 2
  • Danh Le-Phuoc
    • 1
  1. 1.Open Distributed Systems, TU BerlinBerlinGermany
  2. 2.Fraunhofer Institute for Open Communication SystemsBerlinGermany
  3. 3.Insight Centre for Data Analytics, NUI GalwayGalwayIreland
  4. 4.University of Applied Sciences and Arts Western Switzerland HES-SOSierreSwitzerland

Personalised recommendations