Sandfly Ecology of Kala-azar Transmission

Part of the SpringerBriefs in Medical Earth Sciences book series (BRIEFSMEEASC)


This chapter focused on vector ecology on disease transmission. Approximately, 900 phlebotomine sandfly species have been recorded, and out of which 30% of the species are proven vector of kala-azar. Usually, sandflies are extended between 50°N and 40°S in the tropical and sub-tropical areas. Various ecological factors like rainfall, wind speed, relative humidity, soil moisture, pH, and organic carbon are known to affect the oviposition of gravid female sandflies along with the survival and growth of larvae. Sandfly density and behaviors of sandfly, risk mapping, and vector control strategy have been described. A case study has been described for identification of sandfly density using geographical factors.


Sandfly Vector ecology Kala-azar disease Vector control strategy 


  1. Abdullah AU, Dewan A, Shogib RI, Rahman M, Hossain F (2017) Environmental factors associated with the distribution of visceral leishmaniasis in endemic areas of Bangladesh: modelling the ecological niche. Trop Med Health 45:13CrossRefGoogle Scholar
  2. Addy M, Mitra AK, Ghosh KK, Hati AK (1983) Host preference of Phlebotomus argentipes in different biotopes. Trop Geogr Med 35(4):343–345Google Scholar
  3. Alemayehu B, Alemayehu M (2017) Leishmaniasis: a review on parasite, vector and reservoir host. Health Sci J 11(4):519CrossRefGoogle Scholar
  4. Alvar J, Ve’lez ID, Bern C, Herrero M, Desjeux P et al (2012) WHO Leishmaniasis Control Team. Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7:e35671CrossRefGoogle Scholar
  5. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL et al (2013) The global distribution and burden of dengue. Nature 496:504–507CrossRefGoogle Scholar
  6. Bhunia GS (2014) An appraisal of environmental determinants of the disease visceral leishmaniasis (Kala-azar) using remote sensing and GIS techniques: case studies of Vaishali and Muzaffarpur districts, Bihar. PhD thesis, Submitted to the Department of Geography, University of Calcutta, KolkataGoogle Scholar
  7. Bhunia GS, Kesari S, Jeyaram A, Kumar V, Das P (2010a) Influence of topography on the endemicity of Kala-azar: a study based on remote sensing and geographical information system. Geospat Health 4(2):155–165CrossRefGoogle Scholar
  8. Bhunia GS, Kumar V, Kumar AJ, Das P, Kesari S (2010b) The use of remote sensing in the identification of the eco-environmental factors associated with the risk of human visceral leishmaniasis (kala-azar) on the Gangetic plain, in north-eastern India. Ann Trop Med Parasitol 104(1):35–53CrossRefGoogle Scholar
  9. Bhunia GS, Kesari S, Chatterjee N, Pal DK, Kumar V, Ranjan A, Das P (2011a) Incidence of visceral leishmaniasis in the Vaishali district of Bihar, India: spatial patterns and role of inland surface water bodies. Geospat Health 5:205–215CrossRefGoogle Scholar
  10. Bhunia GS, Dikhit MR, Kesari S, Sahoo GC, Das P (2011b) Role of remote sensing, geographical information system (GIS) and bioinformatics in kala-azar epidemiology. J Biomed Res 25(6):373–384. Scholar
  11. Bhunia GS, Kesari S, Chatterjee N, Kumar V, Das P (2012a) Localization of kala-azar in the endemic region of Bihar, India based on land use/land cover assessment at different scales. Geospat Health 6(2):177–193CrossRefGoogle Scholar
  12. Bhunia GS, Kesari S, Chatterjee N, Kumar V, Das P (2012b) Telehealth: a perspective approach for visceral leishmaniasis (kala-azar) control in India. Pathog Glob Health 106(3):1–9CrossRefGoogle Scholar
  13. Bhunia GS, Chatterjee N, Kumar V, Siddiqui NA, Mandal R, Das P, Kesari S (2012c) Delimitation of kala-azar risk areas in the district of Vaishali in Bihar (India) using a geo-environmental approach. Mem Inst Oswaldo Cruz 107(5):609–620CrossRefGoogle Scholar
  14. Boelaert M, Meheus F, Sanchez A, Singh SP, Vanlerberghe V, Picado A et al (2009) The poorest of the poor: a poverty appraisal of households affected by visceral leishmaniasis in Bihar, India. Trop Med Int Health 14:639–644CrossRefGoogle Scholar
  15. Cheghabaleki ZZ, Yarahmadi D, Karampour M, Shamsipour A (2019) Spatial dynamics of a phlebotomine sand flies population in response to climatic conditions in Bushehr Province of Iran. Ann Glob Health 85(1):60CrossRefGoogle Scholar
  16. Chowdhury R, Dotson E, Blackstock AJ, McClintock S, Maheswary NP, Faria S et al (2011) Comparison of insecticide-treated nets and indoor residual spraying to control the vector of visceral leishmaniasis in Mymensingh District, Bangladesh. Am J Trop Med Hyg 84(5):662–667CrossRefGoogle Scholar
  17. Chowdhury R, Kumar V, Mondal D, Das ML, Das P, Dash AP, Kroeger A (2016) Implication of vector characteristics of Phlebotomus argentipes in the kala-azar elimination programme in the Indian sub-continent. Pathog Glob Health 110(3):87–96CrossRefGoogle Scholar
  18. Cunze S, Kochmann J, Koch LK, Hasselmann KJQ, Klimpel S (2019) Leishmaniasis in Eurasia and Africa: geographical distribution of vector species and pathogens. R Soc Open Sci 6:190334CrossRefGoogle Scholar
  19. da Costa SM, Cordeiro JLP, Rangel EF (2018) Environmental suitability for Lutzomyia (Nyssomyia) whitmani (Diptera: Psychodidae: Phlebotominae) and the occurrence of American cutaneous leishmaniasis in Brazil. Parasit Vectors 11:155CrossRefGoogle Scholar
  20. Das ML (2004) Studies on Phlebotomus argentipes Annandale & Brunetti (Diptera: Psychodidae). Vector of kala-azar in Eastern Part of Nepal. PhD thesis submitted in BHU; Varanasi, pp 1–205Google Scholar
  21. Dhiman RC, Shetty PS, Dhanda V (1983) Breeding habitats of phlebotomine sand flies in Bihar, India. Indian J Med Res 77:29–32Google Scholar
  22. Ding F, Wang Q, Fu J, Chen S, Hao M, Ma T, Zheng C, Jiang D (2019) Risk factors and predicted distribution of visceral leishmaniasis in the Xinjiang Uygur autonomous region, China, 2005–2015. Parasit Vectors 12:528CrossRefGoogle Scholar
  23. Elnaiem DA (2011) Ecology and control of the sand fly vectors of Leishmania donovani in East Africa, with special emphasis on Phlebotomus orientalis. J Vector Ecol 36(1):S23–S31CrossRefGoogle Scholar
  24. Elnaiem DA, Connor SJ, Thomson MC, Hassan MM, Hassan HK, Aboud MA, Ashford RW (1998) Environmental determinants of the distribution of Phlebotomus orientalis in Sudan. Ann Trop Med Parasitol 92:877–887CrossRefGoogle Scholar
  25. Foley DH, Wilkerson RC, Dornak LL, Pecor DB, Nyari AS, Rueda LM, Long LS, Richardson JH (2012) SandflyMap: leveraging spatial data on sand fly vector distribution for disease risk assessments. Geospat Health 6(3):S25–S30CrossRefGoogle Scholar
  26. Garlapati RB, Abbasi I, Warburg A, Poché D, Poché R (2012) Identification of blood meals in wild caught blood fed Phlebotomus argentipes (Diptera: Psychodidae) using cytochrome b PCR and reverse line blotting in Bihar, India. J Med Entomol 49(3):515–521. Scholar
  27. Githeko AK, Lindsay SW, Confalonieri UE, Patz JA (2000) Climate change and vector-borne diseases: a regional analysis. Bull World Health Organ 78(9):1136–1147Google Scholar
  28. Kalra NL, Bang YN (1988) Manual of entomology in visceral leishmaniasis. World Health Organization, Document SEA/VBC/35. Regional Office for Southeast Asia, New DelhiGoogle Scholar
  29. Kasap OE, Alten B (2006) Comparative demography of the sand fly Phlebotomus papatasi (Diptera: Psychodidae) at constant temperatures. J Vector Ecol 31:378–385CrossRefGoogle Scholar
  30. Kesari S, Bhunia GS, Kumar V, Jeyaram A, Ranjan A, Das P (2011) A comparative evaluation of endemic and non-endemic region of visceral leishmaniasis (Kala-azar) in India with ground survey and space technology. Mem Inst Oswaldo Cruz, Rio de Janeiro 106(5):515–523CrossRefGoogle Scholar
  31. Koch LK, Kochmann J, Klimpel S, Cunze S (2017) Modeling the climatic suitability of leishmaniasis vector species in Europe. Sci Rep 7:13325. Scholar
  32. Mandal R, Kesari S, Kumar V, Das P (2018) Trends in spatio-temporal dynamics of visceral leishmaniasis cases in a highly endemic focus of Bihar, India: an investigation based on GIS tools. Parasit Vectors 11:220CrossRefGoogle Scholar
  33. Merino-Espinosa G et al (2016) Differential ecological traits of two Phlebotomus sergenti mitochondrial lineages in southwestern Europe and their epidemiological implications. Trop Med Int Health 21:630–641CrossRefGoogle Scholar
  34. Orshan L, Elbaz S, Ben-Ari Y, Akad F, Afik O, Ben-Avi I et al (2016) Distribution and dispersal of Phlebotomus papatasi (Diptera: Psychodidae) in a zoonotic cutaneous leishmaniasis focus, the Northern Negev, Israel. PLoS Negl Trop Dis 10:e0004819CrossRefGoogle Scholar
  35. Parrot L (1936) Notes Le sur les Phlébotomes. XVII. Phlebotomus de ‘Ethiopie. Arch Inst Paster d’Algérie 16:30Google Scholar
  36. Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M et al (2011) Ecological niches and geographic distributions, Monographs in population biology, vol 49. Princeton University Press, PrincetonCrossRefGoogle Scholar
  37. Picado A, Singh SP, Vanlerberghe V, Uranw S, Ostyn B, Kaur H et al (2011) Residual activity and integrity of PermaNet(®) 2.0 after 24 months of household use in a community randomized trial of long lasting insecticidal nets against visceral leishmaniasis in India and Nepal. Trans R Soc Trop Med Hyg 106(3):150–159CrossRefGoogle Scholar
  38. Poché D, Garlapati R, Ingenloff K, Remmers J, Poché R (2011) Bionomics of phlebotomine sand flies from three villages in Bihar, India. J Vector Ecol 36(S1):S106–S117CrossRefGoogle Scholar
  39. Poché DM, Grant WE, Wang HH (2016) Visceral Leishmaniasis on the Indian subcontinent: modelling the dynamic relationship between vector control schemes and vector life cycles. PLoS Negl Trop Dis 10(8):e0004868CrossRefGoogle Scholar
  40. Quinnell RJ, Courtenay O (2009) Transmission, reservoir hosts and control of zoonotic visceral leishmaniasis. Parasitology 136(14):1915–1934CrossRefGoogle Scholar
  41. Rahman SJ, Menon PK, Rajagopal R, Mathur KK (1986) Behaviour of Phlebotomus argentipes in the foothills of Nilgiris (Tamil Nadu), South India. J Commun Disord 18(1):35–44Google Scholar
  42. Ranjan A, Sur D, Singh VP, Siddique NA, Manna B, Lal CS, Sinha PK, Kishore K, Bhattacharya SK (2005) Risk factors for Indian kala-azar. Am J Trop Med Hyg 73(1):74–78CrossRefGoogle Scholar
  43. Ready PD (2000) Sand fly evolution and its relationship to Leishmania transmission. Mem Inst Oswaldo Cruz 95(4):589–590CrossRefGoogle Scholar
  44. Ready PD (2013) Biology of phlebotomine sand flies as vectors of disease agents. Annu Rev Entomol 58:227–250CrossRefGoogle Scholar
  45. Singh A, Roy SP, Kumar R, Nath A (2008a) Temperature and humidity play a crucial role in the development of P. argentipes. J Ecophysiol Occup Health 8(1 & 2):47–52Google Scholar
  46. Singh R, Lal S, Saxena VK (2008b) Breeding ecology of visceral leishmaniasis vector sandfly in Bihar state of India. Acta Trop 107:117–120CrossRefGoogle Scholar
  47. Sivagnaname N, Amalraj DD (1997) Breeding habitats of vector sand flies and their control in India. J Commun Disord 29(2):153–159Google Scholar
  48. Sudhakar S, Srinivas T, Palit A, Kar SK, Battacharya SK (2006) Mapping of risk prone areas of kala-azar (Visceral leishmaniasis) in parts of Bihar state, India: an RS and GIS approach. J Vect Borne Dis 43:115–122Google Scholar
  49. Waitz Y, Paz S, Meir D, Malkinson D (2019) Effects of land use type, spatial patterns and host presence on Leishmania tropica vectors activity. Parasit Vectors 12:320. Scholar
  50. World Health Organization (WHO) (2010) Control of the leishmaniasis. Report of a meeting of the WHO Expert Committee on the control of Leishmaniasis, Geneva, 22–26 March, 2010. Available at:

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.TPF Gentisa Euroestudios S LNoidaIndia
  2. 2.PG Department of GeographyRaja N. L. Khan Women’s College (Autonomous)MidnaporeIndia

Personalised recommendations