3D-Printed Canine Tibia Model from Clinical Computed Tomography Data

  • Fátima Somovilla-GómezEmail author
  • Saúl Iñiguez-Macedo
  • Eduardo Jiménez-Ruiz
  • Laura Muro-Fraguas
  • Gonzalo Gañán-Catalina
  • Álvaro Leciñana-Soldevilla
  • Marina Corral-Bobadilla
  • Carmen Díaz-Bertrana-Sánchez
  • Rubén Lostado-Lorza
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


The goal of this study is to show the process for obtaining a 3D model of a canine tibia using free software from clinical quality computed tomography (CT) images. In this case, the obtained model was used for generating a computer simulation with the Finite Element Method (FEM) and for generating a 3D printed canine tibia. First, a real canine tibia was scanned in order to generate Dicom (Digital Imaging and Communication on Medicine) CT images. Using the open source 3D Slicer, the Dicom CT images, the cortical and trabecular bones were segmented to construct to build a first 3D tibia model. The defects of this first 3D model were examined, and its surfaces were smoothed using open source MeshMixer software. Subsequently, the smoothed 3D tibia model was exported to STL file (Standard Triangle Language), and then imported to Mentat-Marc FEM software in which uniform tetrahedral elements meshes for the trabecular and cortical bones were generated. These 3D meshes were used to develop a Finite Element Analysis for studying the mechanical stiffness of the tibia. Also, the stl file obtained was imported to the Wanhao cura v.18.04 software, and the G-code file were created. Finally, a 3D canine tibia model was printed in a Wanhao Duplicator 6 3D printer with ivory-colored PLA. This 3D printed model was used for later for educational training.


Tibia Computerized axial tomography Canine Cortical Trabecular FEM 3D printed model 



The authors wish to thank the University of La Rioja, Insorvet veterinary orthopedics (, Albeitar Veterinary Hospital ( and to the Autonomous University of Barcelona (AUB).


  1. 1.
    Evans, H.E., De Lahunta, A.: Miller’s Anatomy of the Dog-E-Book. Elsevier Health Sciences, St. Louis (2013)Google Scholar
  2. 2.
    Gemmill, T.J., Cave, T.A., Clements, D.N., Clarke, S.P., Bennett, D., Carmichael, S.: Treatment of canine and feline diaphyseal radial and tibial fractures with low-stiffness external skeletal fixation. J. Small Anim. Pract. 45(2), 85–91 (2004)CrossRefGoogle Scholar
  3. 3.
    Johnson, A.L., Kneller, S.K., Weigel, R.M.: Radial and tibial fracture repair with external skeletal fixation: effects of fracture type, reduction, and complications on healing. Vet. Surg. 18(5), 367–372 (1989)CrossRefGoogle Scholar
  4. 4.
    Esses, S.J., Berman, P., Bloom, A.I., Sosna, J.: Clinical applications of physical 3D models derived from MDCT data and created by rapid prototyping. Am. J. Roentgenol. 196(6), W683–W688 (2011)CrossRefGoogle Scholar
  5. 5.
    Rengier, F., Mehndiratta, A., Von Tengg-Kobligk, H., Zechmann, C.M., Unterhinninghofen, R., Kauczor, H.U., Giesel, F.L.: 3D printing based on imaging data: review of medical applications. Int. J. Comput. Assist. Radiol. Surg. 5(4), 335–341 (2010)CrossRefGoogle Scholar
  6. 6.
    Chua, C.K., Chou, S.M., Lin, S.C., Eu, K.H., Lew, K.F.: Rapid prototyping assisted surgery planning. Int. J. Adv. Manuf. Technol. 14(9), 624–630 (1998)CrossRefGoogle Scholar
  7. 7.
    Mertz, L.: Dream it, design it, print it in 3-D: what can 3-D printing do for you? IEEE Pulse 4(6), 15–21 (2013)CrossRefGoogle Scholar
  8. 8.
    Lee, M.Y., Chang, C.C., Ku, Y.C.: New layer-based imaging and rapid prototyping techniques for computer-aided design and manufacture of custom dental restoration. J. Med. Eng. Technol. 32(1), 83–90 (2008)CrossRefGoogle Scholar
  9. 9.
    Harrysson, O.L., Hosni, Y.A., Nayfeh, J.F.: Custom-designed orthopedic implants evaluated using finite element analysis of patient-specific computed tomography data: femoral-component case study. BMC Musculoskelet. Disord. 8(1), 91 (2007)CrossRefGoogle Scholar
  10. 10.
    Goerne, H., Rajiah, P.: Computed tomography. In: Right Heart Pathology, pp. 601–612. Springer, Cham (2018)CrossRefGoogle Scholar
  11. 11.
    Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.C., Pujol, S., Bauer, C., Jennings, D., Fennessy, F., Sonka, M., Buatti, J., Aylward, S., Miller, J.V., Pieper, S., Kikinis, R.: 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 30(9), 1323–1341 (2012)CrossRefGoogle Scholar
  12. 12.
    Autodesk Meshmixer: Accessed 19 Sept 2019
  13. 13.
    Öchsner, A., Öchsner, M.: The Finite Element Analysis Program MSC Marc/Mentat. Springer, Singapore (2016)CrossRefGoogle Scholar
  14. 14.
    Somovilla-Gómez, F., Lostado-Lorza, R., Corral-Bobadilla, M., Escribano García, R.: Improving the process of adjusting the parameters of finite element models of healthy human intervertebral discs by the multi-response surface method. Materials 10(10), 1116 (2017)CrossRefGoogle Scholar
  15. 15.
    Somovilla-Gómez, F., Lostado-Lorza, R., Corral-Bobadilla, M., Escribano-García, R.: Improvement in determining the risk of damage to the human lumbar functional spinal unit considering age, height, weight and sex using a combination of FEM and RSM. Biomech. Model. Mechanobiol. 19(1), 351–387 (2019)CrossRefGoogle Scholar
  16. 16.
    McCartney, W., MacDonald, B., Ober, C.A., Lostado-Lorza, R., Somovilla-Gómez, F.: Pelvic modelling and the comparison between plate position for double pelvic osteotomy using artificial cancellous bone and finite element analysis. BMC Vet. Res. 14(1), 100 (2018)CrossRefGoogle Scholar
  17. 17.
    Wanhao 3D printer: Accessed 19 Sept 2019

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Fátima Somovilla-Gómez
    • 1
    Email author
  • Saúl Iñiguez-Macedo
    • 1
  • Eduardo Jiménez-Ruiz
    • 2
  • Laura Muro-Fraguas
    • 1
  • Gonzalo Gañán-Catalina
    • 1
  • Álvaro Leciñana-Soldevilla
    • 1
  • Marina Corral-Bobadilla
    • 1
  • Carmen Díaz-Bertrana-Sánchez
    • 3
  • Rubén Lostado-Lorza
    • 1
  1. 1.University of La RiojaLogroñoSpain
  2. 2.Public University of NavarrePamplonaSpain
  3. 3.Autonomous University of BarcelonaBarcelonaSpain

Personalised recommendations