Fire as an Earth System Process

  • Víctor Resco de Dios
Part of the Managing Forest Ecosystems book series (MAFE, volume 36)


This chapter reviews the role of wildfires as an essential element of the Earth system. After a brief explanation of systems theory, we will discuss how fire regulates the oxygen cycle and climate. We will then travel across the Earth’s history to understand how wildfires have shaped the Earth as we know it today. We will cover how fire activity has varied across geological scales and how different processes, including mass extinctions, have been affected by wildfire activity. We will then review fire-human interactions. Wildfires have served as a powerful tool for human alteration of landscape structure. We will provide examples of how humans have modified African, Australian, American, and European landscapes through the use of fire. We will finally discuss the cost of fire to human lives, as the number of fire-induced fatalities from smoke is on the rise. Although wildfires are often perceived as a major environmental problem, their effect over the Earth system makes them an essential element for life.


  1. Abatzoglou JT, Williams AP (2016) Impact of anthropogenic climate change on wildfire across western US forests. Proc Natl Acad Sci 113(42):11770–11775. Scholar
  2. Alkama R, Cescatti A (2016) Biophysical climate impacts of recent changes in global forest cover. Science 351(6273):600–604. Scholar
  3. Archibald S, Staver AC, Levin SA (2012) Evolution of human-driven fire regimes in Africa. Proc Natl Acad Sci U S A 109(3):847–852. Scholar
  4. Arora VK, Melton JR (2018) Reduction in global area burned and wildfire emissions since 1930s enhances carbon uptake by land. Nat Commun 9(1):1326. Scholar
  5. Beerling DJ, Osborne CP (2006) The origin of the savanna biome. Glob Chang Biol 12:2023–2031CrossRefGoogle Scholar
  6. Belcher CM, Yearsley JM, Hadden RM, McElwain JC, Rein G (2010) Baseline intrinsic flammability of Earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proc Natl Acad Sci 107(52):22448–22453. Scholar
  7. Berna F, Goldberg P, Horwitz LK, Brink J, Holt S, Bamford M, Chazan M (2012) Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa. Proc Natl Acad Sci U S A 109(20):E1215–E1220. Scholar
  8. Berner RA, Beerling DJ, Dudley R, Robinson JM, Wildman RA (2003) Phanerozoic atmospheric oxygen. Annu Rev Earth Planet Sci 31(1):105–134. Scholar
  9. Bierregaard RO, Gascon C, Lovejoy TE, Mesquita R (2001) Lessons from Amazonia – the ecology and conservation of a fragmented forest. Yale University Press, YaleGoogle Scholar
  10. Biswell H (1999) Prescribed burning in California Wildlands vegetation management. University of California Press, Los AngelesGoogle Scholar
  11. Boer MM, Resco de Dios V, Bradstock RA (2020) Unprecedented burn area of Australian mega forest fires. Nat Clim Chang 10:171–172Google Scholar
  12. Bond WJ (2014) Fires in the Cenozoic: a late flowering of flammable ecosystems. Front Plant Sci 5:749. Scholar
  13. Bowman DMJS, Johnston FH (2005) Wildfire smoke, fire management, and human health. EcoHealth 2(1):76–80. Scholar
  14. Brown SAE, Scott AC, Glasspool IJ, Collinson ME (2012) Cretaceous wildfires and their impact on the Earth system. Cretac Res 36:162–190. Scholar
  15. Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 143(1):1–10. Scholar
  16. Chapin FS, Randerson JT, McGuire AD, Foley JA, Field CB (2008) Changing feedbacks in the climate–biosphere system. Front Ecol Environ 6(6):313–320.
  17. Charles-Dominique T, Davies J, Hempson G, Simmy B, Daru B, Kabongo R, Maurin O, Muasya A, Bank M, Bond W (2016) Spiny plants, mammal browsers, and the origin of African savannas. Proc Nat Acad Sci 113.
  18. Clark JD, Harris JWK (1985) Fire and its roles in early hominid lifeways. Afr Achael Rev 3:3–27CrossRefGoogle Scholar
  19. Cochrane MA, Schulze MD (1998) Forest fires in the Brazilian Amazon. Conserv Biol 12(5):948–950CrossRefGoogle Scholar
  20. Daniau AL, d’Errico F, Sanchez Goni MF (2010) Testing the hypothesis of fire use for ecosystem management by neanderthal and upper palaeolithic modern human populations. PLoS One 5(2):e9157. Scholar
  21. Daniau AL, Sanchez Goni MF, Martinez P, Urrego DH, Bout-Roumazeilles V, Desprat S, Marlon JR (2013) Orbital-scale climate forcing of grassland burning in southern Africa. Proc Natl Acad Sci U S A 110(13):5069–5073. Scholar
  22. Dannenmann M, Díaz-Pinés E, Kitzler B, Karhu K, Tejedor J, Ambus P, Parra A, Sánchez L, Resco V, Ramírez D, Povoas-Guimaraes L, Zechmeister-Boltenstern S, Kraus D, Castaldi S, Vallejo A, Rubio A, Moreno J, Butterbach-Bahl K (2018) Post-fire nitrogen balance of Mediterranean shrublands: direct combustion losses versus gaseous and leaching losses from the post-fire soil mineral nitrogen flush. Glob Chan Biol 24(10):4505–4520Google Scholar
  23. Falcon-Lang H (1998) The impact of wildfire on an early carboniferous coastal environment, North Mayo, Ireland. Palaeogeogr Palaeoclimatol Palaeoecol 139:121–138CrossRefGoogle Scholar
  24. Falcon-Lang HJ (2000) Fire ecology of the Carboniferous tropical zone. Palaeogeogr Palaeoclimatol Palaeoecol 164:339–355CrossRefGoogle Scholar
  25. Francis JE (1984) The seasonal environment of the Purbeck (Upper Jurassic) fossil forests. Palaeogeogr Palaeoclimatol Palaeoecol 48:285–307CrossRefGoogle Scholar
  26. Friedlingstein P, Meinshausen M, Arora VK, Jones CD, Anav A, Liddicoat SK, Knutti R (2014) Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J Clim 27:511–526. Scholar
  27. Fusco EJ, Finn JT, Balch JK, Nagy RC, Bradley BA (2019) Invasive grasses increase fire occurrence and frequency across US ecoregions. Proc Natl Acad Sci 116(47):23594–23599. Scholar
  28. Giglio L, Randerson JT, van der Werf GR (2013) Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J Geophys Res Biogeo 118:317–328. Scholar
  29. Gil-Romera G, González-Sampériz P, Lasheras-Álvarez L, Sevilla-Callejo M, Moreno A, Valero-Garcés B, López-Merino L, Carrión JS, Pérez Sanz A, Aranbarri J, García-Prieto Fronce E (2014) Biomass-modulated fire dynamics during the last glacial–interglacial transition at the Central Pyrenees (Spain). Palaeogeogr, Palaeoclim, Palaeoecol 402:113–124. Scholar
  30. Gill JL, Williams JW, Jackson ST, Lininger KB, Robinson GS (2009) Pleistocene Megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326(5956):1100–1103. Scholar
  31. Glasspool IJ, Edwards D, Axe L (2006) Charcoal in the early Devonian: a wildfire-derived Konservat–Lagerstätte. Rev Palaeobot Palynol 142(3):131–136. Scholar
  32. Glasspool IJ, Scott AC (2010) Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nat Geosci 3:627–630. Scholar
  33. Gómez-González S, Ojeda F, Fernandes PM (2018) Portugal and Chile: longing for sustainable forestry while rising from the ashes. Environ Sci Pol 81:104–107. Scholar
  34. Hamilton DS, Hantson S, Scott CE, Kaplan JO, Pringle KJ, Nieradzik LP, Rap A, Folberth GA, Spracklen DV, Carslaw KS (2018) Reassessment of pre-industrial fire emissions strongly affects anthropogenic aerosol forcing. Nat Commun 9(1).
  35. Harper AR, Santin C, Doerr SH, Froyd CA, Albini D, Otero XL, Viñas L, Pérez-Fernández B (2019) Chemical composition of wildfire ash produced in contrasting ecosystems and its toxicity to Daphnia magna. Int J Wildland Fire 28(10):726. Scholar
  36. Harris TM (1958) Forest fire in the Mesozoic. J Ecol 46:447–453CrossRefGoogle Scholar
  37. Houghton J (2012) Global warming – the complete briefing. Cambridge University Press, CambridgeGoogle Scholar
  38. Hu Y, Fernandez-Anez N, Smith TEL, Rein G (2018) Review of emissions from smouldering peat fires and their contribution to regional haze episodes. Int J Wildland Fire 27(5):293. Scholar
  39. Johnston FH, Henderson SB, Chen Y, Randerson JT, Marlier M, Defries RS, Kinney P, Bowman DM, Brauer M (2012) Estimated global mortality attributable to smoke from landscape fires. Environ Health Perspect 120(5):695–701. Scholar
  40. Jones MW, Santín C, van der Werf GR, Doerr SH (2019) Global fire emissions buffered by the production of pyrogenic carbon. Nat Geosci 12(9):742–747. Scholar
  41. Koch A, Brierley C, Maslin MM, Lewis SL (2019) Earth system impacts of the European arrival and great dying in the Americas after 1492. Quat Sci Rev 207:13–36. Scholar
  42. Kump LR (1988) Terrestrial feedback in atmospheric oxygen regulation by fire and phosphorus. Nature 335(6186):152–154. Scholar
  43. Kunzli N, Avol E, Wu J, Gauderman WJ, Rappaport E, Millstein J, Bennion J, McConnell R, Gilliland FD, Berhane K, Lurmann F, Winer A, Peters JM (2006) Health effects of the 2003 Southern California wildfires on children. Am J Respir Crit Care Med 174(11):1221–1228. Scholar
  44. Lawson IT, Tzedakis PC, Roucoux KH, Galanidou N (2013) The anthropogenic influence on wildfire regimes: charcoal records from the Holocene and Last Interglacial at Ioannina, Greece. J Biogeogr 40(12):2324–2334. Scholar
  45. Le Quéré C, Andrew RM, Friedlingstein P, Sitch S, Hauck J, Pongratz J, Pickers PA, Korsbakken JI, Peters GP, Canadell JG, Arneth A, Arora VK, Barbero L, Bastos A, Bopp L, Chevallier F, Chini LP, Ciais P, Doney SC, Gkritzalis T, Goll DS, Harris I, Haverd V, Hoffman FM, Hoppema M, Houghton RA, Hurtt G, Ilyina T, Jain AK, Johannessen T, Jones CD, Kato E, Keeling RF, Goldewijk KK, Landschützer P, Lefèvre N, Lienert S, Liu Z, Lombardozzi D, Metzl N, Munro DR, Nabel JEMS, S-i N, Neill C, Olsen A, Ono T, Patra P, Peregon A, Peters W, Peylin P, Pfeil B, Pierrot D, Poulter B, Rehder G, Resplandy L, Robertson E, Rocher M, Rödenbeck C, Schuster U, Schwinger J, Séférian R, Skjelvan I, Steinhoff T, Sutton A, Tans PP, Tian H, Tilbrook B, Tubiello FN, van der Laan-Luijkx IT, van der Werf GR, Viovy N, Walker AP, Wiltshire AJ, Wright R, Zaehle S, Zheng B (2018) Global Carbon Budget 2018. Earth Syst Sci Data 10(4):2141–2194. Scholar
  46. Lenton T (2016) Earth system science: a very short introduction. Oxford University Press, OxfordCrossRefGoogle Scholar
  47. Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci 105(6):1786–1793. Scholar
  48. Ma Y, Tigabu M, Guo X, Zheng W, Guo L, Guo F (2019) Water-soluble inorganic ions in fine particulate emission during forest fires in chinese boreal and subtropical forests: an indoor experiment. Forests 10(11):994. Scholar
  49. Marlon JR, Bartlein PJ, Daniau A-L, Harrison SP, Maezumi SY, Power MJ, Tinner W, Vanniére B (2013) Global biomass burning: a synthesis and review of Holocene paleofire records and their controls. Quat Sci Rev 65:5–25. Scholar
  50. Mellars P (2006) Why did modern human populations disperse from Africa ca. 60,000 years ago? A new model. Proc Natl Acad Sci U S A 103:9381–9386CrossRefGoogle Scholar
  51. Melott AL, Thomas BC (2019) From cosmic explosions to terrestrial fires? J Geol 127:475–481. Scholar
  52. Miller GH, Fogel ML, Magee JW, Gagan MK, Clarke SJ, Johnson BJ (2005) Ecosystem collapse in Pleistocene Australia and a human role in Megafaunal extinction. Science 309(5732):287–290. Scholar
  53. Mooney SD, Harrison SP, Bartlein PJ, Daniau AL, Stevenson J, Brownlie KC, Buckman S, Cupper M, Luly J, Black M, Colhoun E, D’Costa D, Dodson J, Haberle S, Hope GS, Kershaw P, Kenyon C, McKenzie M, Williams N (2011) Late quaternary fire regimes of Australasia. Quat Sci Rev 30(1):28–46. Scholar
  54. Morales-Molino C, Tinner W, García-Antón M, Colombaroli D (2017) The historical demise of Pinus nigra forests in the Northern Iberian Plateau (South-Western Europe). J Ecol 105:634–646CrossRefGoogle Scholar
  55. Moreira F, Ascoli D, Safford H, Adams M, Moreno JM, Pereira JC, Catry F, Armesto J, Bond WJ, Gonzalez M, Curt T, Koutsias N, McCaw L, Price O, Pausas J, Rigolot E, Stephens S, Tavsanoglu C, Vallejo R, Van Wilgen B, Xanthopoulos G, Fernandes P (2019) Wildfire management in Mediterranean-type regions: paradigm change needed. Environ Res Lett doi:
  56. Nobre CA, Sampaio G, Borma LS, Castilla-Rubio JC, Silva JS, Cardoso M (2016) Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc Natl Acad Sci 113(39):10759–10768. Scholar
  57. Nolan RH, Lane PNJ, Benyon RG, Bradstock RA, Mitchell PJ (2014a) Changes in evapotranspiration following wildfire in resprouting eucalypt forests. Ecohydrology 7:1363–1377. Scholar
  58. Nolan RH, Lane PNJ, Benyon RG, Bradstock RA, Mitchell PJ (2015) Trends in evapotranspiration and streamflow following wildfire in resprouting eucalypt forests. J Hydrol 524:614–624. Scholar
  59. Nolan RH, Mitchell PJ, Bradstock RA, Lane PN (2014b) Structural adjustments in resprouting trees drive differences in post-fire transpiration. Tree Physiol 34(2):123–136. Scholar
  60. Page SE, Siegert F, Rieley JO, Boehm H-DV, Jaya A, Limin S (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420(6911):61–65. Scholar
  61. Pausas JG, Keeley JE (2009) A burning story: the role of fire in the history of life. Bioscience 59(7):593–601. Scholar
  62. Penman TD, Eriksen CE, Horsey B, Bradstock RA (2016) How much does it cost residents to prepare their property for wildfire? Int J Disaster Risk Reduct 16:88–98. Scholar
  63. Radeloff VC, Helmers DP, Kramer HA, Mockrin MH, Alexandre PM, Bar-Massada A, Butsic V, Hawbaker TJ, Sn M, Syphard AD, Stewart SI (2018) Rapid growth of the US wildland-urban interface raises wildfire risk. Proc Natl Acad Sci U S A 115:3314–3319CrossRefGoogle Scholar
  64. Roberts N (1998) The Holocene: an environmental history. Wiley-Blackwell, OxfordGoogle Scholar
  65. Rust AJ, Saxe S, McCray J, Rhoades CC, Hogue TS (2019) Evaluating the factors responsible for post-fire water quality response in forests of the western USA. Int J Wildland Fire 28(10):769. Scholar
  66. Scott AC, Bowman DMJS, Bond WJ, Pyne SJ, Alexander ME (2014) Fire on earth: an introduction. Wiley-Blackwell, ChichesterGoogle Scholar
  67. Shakesby R, Doerr S (2006) Wildfire as a hydrological and geomorphological agent. Earth Sci Rev 74(3–4):269–307. Scholar
  68. Shakesby RA (2011) Post-wildfire soil erosion in the Mediterranean: review and future research directions. Earth Sci Rev 105(3–4):71–100. Scholar
  69. Syphard AD, Keeley JE, Pfaff AH, Ferschweiler K (2017) Human presence diminishes the importance of climate in driving fire activity across the United States. Proc Natl Acad Sci 114(52):13750–13755. Scholar
  70. Tosca MG, Diner DJ, Garay MJ, Kalashnikova OV (2015) Human-caused fires limit convection in tropical Africa: first temporal observations and attribution. Geophys Res Lett 42(15):6492–6501. Scholar
  71. Touchan R, Baisan C, Mitsopoulos ID, Dimitrakopoulos AP (2012) Fire history in European Black Pine (Pinus nigra Arn.) forests of the Valia Kalda, Pindus Mountains, Greece. Tree Ring Res 68(1):45–50. Scholar
  72. Turco M, Bedia J, Di Liberto F, Fiorucci P, von Hardenberg J, Koutsias N, Llasat M-C, Xystrakis F, Provenzale A (2016) Decreasing fires in Mediterranean Europe. PLoS One 11(3):e0150663. Scholar
  73. Turetsky MR, Benscoter B, Page S, Rein G, GRvd W, Watts A (2015) Global vulnerability of peatlands to fire and carbon loss. Nat Geosci 8:11–14. Scholar
  74. Urbanski SP, Hao WM, Baker S (2008) Chemical composition of wildland fire emissions. In: Bytnerowicz A, Arbaugh M, Riebau A, Andersen C (eds) Developments in environmental science, vol 8. Elsevier, pp 79–107.
  75. Valbuena-Carabaña M, de Heredia UL, Fuentes-Utrilla P, González-Doncel I, Gil L (2010) Historical and recent changes in the Spanish forests: a socio-economic process. Rev Palaeobot Palynol 162(3):492–506. Scholar
  76. van der Kaars S, Miller GH, Turney CS, Cook EJ, Nurnberg D, Schonfeld J, Kershaw AP, Lehman SJ (2017) Humans rather than climate the primary cause of Pleistocene megafaunal extinction in Australia. Nat Commun 8:14142. Scholar
  77. Watson A, Lovelock JE (2013) The dependence of flame spread and probability of ignition on atmospheric oxygen. In: Belcher C (ed) Fire phenomena and the earth system. Wiley, West Sussex, pp 273–287. Scholar
  78. Watson A, Lovelock JE, Margulis L (1978) Methanogenesis, fires and the regulation of atmospheric oxygen. Biosystems 10(4):293–298. Scholar
  79. Whitlock C, Larsen C (2001) Charcoal as a fire proxy. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, Terrestrial, algal, and siliceous indicators, vol 3. Kluwer Academic Publishers, Dordrecht, pp 75–97CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Víctor Resco de Dios
    • 1
    • 2
  1. 1.School of Life Science and EngineeringSouthwest University of Science and TechnologyMianyangChina
  2. 2.Crop and Forest Sciences and JRU CTFC-AGROTECNIOUniversitat de LleidaLleidaSpain

Personalised recommendations