Advertisement

Cathoristic Logic

A Logic for Capturing Inferences Between Atomic Sentences
  • Richard EvansEmail author
  • Martin Berger
Chapter
  • 33 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12065)

Abstract

Cathoristic logic is a multi-modal logic where negation is replaced by a novel operator allowing the expression of incompatible sentences. We present the syntax and semantics of the logic including complete proof rules, and establish a number of results such as compactness, a semantic characterisation of elementary equivalence, the existence of a quadratic-time decision procedure, and Brandom’s incompatibility semantics property. We demonstrate the usefulness of the logic as a language for knowledge representation.

Keywords

Modal logic Hennessy-Milner logic Transition systems Negation Exclusion Elementary equivalence Incompatibility semantics Knowledge representation Philosophy of language 

Notes

Acknowledgements

We thank Tom Smith, Giacomo Turbanti and the anonymous reviewers for their thoughtful comments.

Supplementary material

References

  1. 1.
    Haskell implementation of cathoristic logic. Submitted with the paper (2014)Google Scholar
  2. 2.
    Abramsky, S.: Computational interpretations of linear logic. TCS 111, 3–57 (1993)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Allan, K. (ed.): Concise Encyclopedia of Semantics. Elsevier, Boston (2009)Google Scholar
  4. 4.
    Aronoff, M., Rees-Miller, J. (eds.): The Handbook of Linguistics. Wiley-Blackwell, Hoboken (2003)Google Scholar
  5. 5.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  6. 6.
    Brachman, R., Levesque, H.: Knowledge Representation and Reasoning. Morgan Kaufmann, Burlington (2004)zbMATHGoogle Scholar
  7. 7.
    Brandom, R.: Making It Explicit. Harvard University Press, Cambridge (1998)Google Scholar
  8. 8.
    Brandom, R.: Between Saying and Doing. Oxford University Press, Oxford (2008)CrossRefGoogle Scholar
  9. 9.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  10. 10.
    Davidson, D.: Essays on Actions and Events. Oxford University Press, Oxford (1980)Google Scholar
  11. 11.
    Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press, Cambridge (2001)zbMATHGoogle Scholar
  12. 12.
  13. 13.
    Evans, R., Short, E.: Versu - a simulationist storytelling system. IEEE Trans. Comput. Intell. AI Games 6(2), 113–130 (2014)CrossRefGoogle Scholar
  14. 14.
    Fikes, R., Nilsson, N.: Strips: a new approach to the application of theorem proving to problem solving. Artif. Intell. 2, 189–208 (1971)CrossRefGoogle Scholar
  15. 15.
    Girard, J.-Y.: Linear logic. TCS 50, 1–101 (1987)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hennessy, M.: Algebraic Theory of Processes. MIT Press Series in the Foundations of Computing. MIT Press, Cambridge (1988)zbMATHGoogle Scholar
  17. 17.
    Hennessy, M., Milner, R.: Algebraic laws for non-determinism and concurrency. JACM 32(1), 137–161 (1985)CrossRefGoogle Scholar
  18. 18.
    Honda, K.: A Theory of Types for the \(\pi \)-Calculus, March 2001. http://www.dcs.qmul.ac.uk/~kohei/logics
  19. 19.
    Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline for structured communication-based programming. In: Hankin, C. (ed.) ESOP 1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0053567CrossRefGoogle Scholar
  20. 20.
    Honda, K., Yoshida, N.: A uniform type structure for secure information flow. SIGPLAN Not. 37, 81–92 (2002)CrossRefGoogle Scholar
  21. 21.
    O’Keeffe, A., McCarthy, M. (eds.): The Routledge Handbook of Corpus Linguistics. Routledge, Abingdon (2010)Google Scholar
  22. 22.
    Peregrin, J.: Logic as based on incompatibility (2010). http://philpapers.org/rec/PERLAB-2
  23. 23.
    Pitts, A.M.: Nominal Sets: Names and Symmetry in Computer Science. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (2013)Google Scholar
  24. 24.
    Russell, B.: An Inquiry into Meaning and Truth. Norton and Co, New York (1940)Google Scholar
  25. 25.
    Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge University Press, Cambridge (2012)zbMATHGoogle Scholar
  26. 26.
    Sassone, V., Nielsen, M., Winskel, G.: Models for concurrency: towards a classification. TCS 170(1–2), 297–348 (1996)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Smith, D., Genesereth, M.: Ordering conjunctive queries. Artif. Intell. 26, 171–215 (1985)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Sommers, F.: The Logic of Natural Language. Clarendon Press, Oxford (1982)Google Scholar
  29. 29.
    Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typing system. In: Halatsis, C., Maritsas, D., Philokyprou, G., Theodoridis, S. (eds.) PARLE 1994. LNCS, vol. 817, pp. 398–413. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-58184-7_118CrossRefGoogle Scholar
  30. 30.
    Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, 2nd edn. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  31. 31.
    Turbanti, G.: Modality in Brandom’s incompatibility semantics. In: Proceedings of the Amsterdam Graduate Conference - Truth, Meaning, and Normativity (2011)Google Scholar
  32. 32.
    van Dalen, D.: Logic and Structure. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-85108-0CrossRefzbMATHGoogle Scholar
  33. 33.
    Wittgenstein, L.: Philosophische Bemerkungen. Suhrkamp Verlag, Frankfurt (1981). Edited by R. RheeszbMATHGoogle Scholar
  34. 34.
    Wittgenstein, L.: Tractatus Logico-Philosophicus: Logisch-Philosophische Abhandlung. Suhrkamp Verlag, Frankfurt (2003). Originally published: 1921CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Imperial CollegeLondonUK
  2. 2.University of SussexBrightonUK

Personalised recommendations