Advertisement

Mesh-Hardened Finite Element Analysis Through a Generalized Moving Least-Squares Approximation of Variational Problems

  • P. BochevEmail author
  • N. Trask
  • P. Kuberry
  • M. Perego
Conference paper
  • 71 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11958)

Abstract

In most finite element methods the mesh is used to both represent the domain and to define the finite element basis. As a result the quality of such methods is tied to the quality of the mesh and may suffer when the latter deteriorates. This paper formulates an alternative approach, which separates the discretization of the domain, i.e., the meshing, from the discretization of the PDE. The latter is accomplished by extending the Generalized Moving Least-Squares (GMLS) regression technique to approximation of bilinear forms and using the mesh only for the integration of the GMLS polynomial basis. Our approach yields a non-conforming discretization of the weak equations that can be handled by standard discontinuous Galerkin or interior penalty terms.

Keywords

Galerkin methods Generalized Moving Least Squares Nonconforming finite elements 

Notes

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research under Award Number DE-SC-0000230927, and the Laboratory Directed Research and Development program at Sandia National Laboratories.

References

  1. 1.
    Arnold, D.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Atluri, S.N., Zhu, T.: A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 22(2), 117–127 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Babuška, I., Aziz, A.: On the angle condition in the finite element method. SIAM J. Numer. Anal. 13(2), 214–226 (1976)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37(2), 229–256 (1994)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chen, J.S., Hillman, M., Rüter, M.: An arbitrary order variationally consistent integration for Galerkin meshfree methods. Int. J. Numer. Methods Eng. 95(5), 387–418 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chen, J.S., Wu, C.T., Yoon, S., You, Y.: A stabilized conforming nodal integration for Galerkin mesh-free methods. Int. J. Numer. Methods Eng. 50(2), 435–466 (2001)CrossRefGoogle Scholar
  8. 8.
    Cockburn, B., Dong, B., Guzmán, J.: Optimal convergence of the original DG method for the transport-reaction equation on special meshes. SIAM J. Numer. Anal. 46(3), 1250–1265 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Harwick, M., Clay, R., Boggs, P., Walsh, E., Larzelere, A., Altshuler, A.: Dart system analysis. Technical report SAND2005-4647, Sandia National Laboratories (2005)Google Scholar
  10. 10.
    Mirzaei, D., Schaback, R., Dehghan, M.: On generalized moving least squares and diffuse derivatives. IMA J. Numer. Anal. 32(3), 983–1000 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Nayroles, B., Touzot, G., Villon, P.: Generalizing the finite element method: diffuse approximation and diffuse elements. Comput. Mech. 10(5), 307–318 (1992)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Puso, M.A., Chen, J.S., Zywicz, E., Elmer, W.: Meshfree and finite element nodal integration methods. Int. J. Numer. Methods Eng. 74(3), 416–446 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Shewchuk, J.R.: What is a good linear element? Interpolation, conditioning, and quality measures. In: 11th International Meshing Roundtable, pp. 115–126 (2002)Google Scholar
  14. 14.
    Trask, N., Perego, M., Bochev, P.: A high-order staggered meshless method for elliptic problems. SIAM J. Sci. Comput. 39(2), A479–A502 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Wendland, H.: Scattered Data Approximation, vol. 17. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  16. 16.
    Wheeler, M.F.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15(1), 152–161 (1978)MathSciNetCrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020

Authors and Affiliations

  1. 1.Center for Computing ResearchSandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations