Advertisement

Parallel Multilevel Monte Carlo Algorithms for Elliptic PDEs with Random Coefficients

  • Petr ZakharovEmail author
  • Oleg Iliev
  • Jan Mohring
  • Nikolay Shegunov
Conference paper
  • 20 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11958)

Abstract

In this work, we developed and investigated Monte Carlo algorithms for elliptic PDEs with random coefficients. We considered groundwater flow as a model problem, where a permeability field represents random coefficients. The computational complexity is the main challenge in uncertainty quantification methods. The computation contains generating of a random coefficient and solving of partial differential equations. The permeability field was generated using the circulant embedding method. Multilevel Monte Carlo (MLMC) simulation can be based on different approximations of partial differential equations. We developed three MLMC algorithms based on finite volume, finite volume with renormalization and renormalization approximation. We compared numerical simulations and parallel performance of MLMC algorithms for 2D and 3D problems.

Keywords

Monte Carlo method Stochastic PDE Renormalization 

References

  1. 1.
    Barth, A., Schwab, C., Zollinger, N.: Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients. Numer. Math. 119(1), 123–161 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Brandt, A., Galun, M., Ron, D.: Optimal multigrid algorithms for calculating thermodynamic limits. J. Stat. Phys. 74(1–2), 313–348 (1994)CrossRefGoogle Scholar
  3. 3.
    Charrier, J., Scheichl, R., Teckentrup, A.L.: Finite element error analysis of elliptic PDEs with random coefficients and its application to multilevel Monte Carlo methods. SIAM J. Numer. Anal. 51(1), 322–352 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cliffe, K.A., Giles, M.B., Scheichl, R., Teckentrup, A.L.: Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients. Comput. Vis. Sci. 14(1), 3 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cliffe, K., Graham, I.G., Scheichl, R., Stals, L.: Parallel computation of flow in heterogeneous media modelled by mixed finite elements. J. Comput. Phys. 164(2), 258–282 (2000)MathSciNetCrossRefGoogle Scholar
  6. 6.
    De Marsily, G., Delay, F., Gonçalvès, J., Renard, P., Teles, V., Violette, S.: Dealing with spatial heterogeneity. Hydrol. J. 13(1), 161–183 (2005)Google Scholar
  7. 7.
    Delhomme, J.: Spatial variability and uncertainty in groundwater flow parameters: a geostatistical approach. Water Resour. Res. 15(2), 269–280 (1979)CrossRefGoogle Scholar
  8. 8.
    Dietrich, C.R., Newsam, G.N.: Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix. SIAM J. Sci. Comput. 18(4), 1088–1107 (1997)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dimov, I., Georgieva, R., Todorov, V.: Balancing of systematic and stochastic errors in Monte Carlo algorithms for integral equations. In: Dimov, I., Fidanova, S., Lirkov, I. (eds.) NMA 2014. LNCS, vol. 8962, pp. 44–51. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-15585-2_5CrossRefzbMATHGoogle Scholar
  10. 10.
    Drzisga, D., Gmeiner, B., Rüde, U., Scheichl, R., Wohlmuth, B.: Scheduling massively parallel multigrid for multilevel Monte Carlo methods. SIAM J. Sci. Comput. 39(5), S873–S897 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE 93(2), 216–231 (2005)CrossRefGoogle Scholar
  12. 12.
    Ghanem, R.G., Spanos, P.D.: Stochastic finite element method: response statistics. In: Ghanem, R.G., Spanos, P.D. (eds.) Stochastic Finite Elements: A Spectral Approach, pp. 101–119. Springer, New York (1991).  https://doi.org/10.1007/978-1-4612-3094-6_4CrossRefzbMATHGoogle Scholar
  13. 13.
    Giles, M.B.: Multilevel Monte Carlo path simulation. Oper. Res. 56(3), 607–617 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Giles, M.: Improved multilevel Monte Carlo convergence using the milstein scheme. In: Keller, A., Heinrich, S., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods, pp. 343–358. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-74496-2_20CrossRefzbMATHGoogle Scholar
  15. 15.
    Graham, I.G., Kuo, F.Y., Nuyens, D., Scheichl, R., Sloan, I.H.: Analysis of circulant embedding methods for sampling stationary random fields. SIAM J. Numer. Anal. 56(3), 1871–1895 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Graham, I.G., Kuo, F.Y., Nuyens, D., Scheichl, R., Sloan, I.H.: Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications. J. Comput. Phys. 230(10), 3668–3694 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hoeksema, R.J., Kitanidis, P.K.: Analysis of the spatial structure of properties of selected aquifers. Water Resour. Res. 21(4), 563–572 (1985)CrossRefGoogle Scholar
  18. 18.
    Iliev, O., Mohring, J., Shegunov, N.: Renormalization based MLMC method for scalar elliptic SPDE. In: Lirkov, I., Margenov, S. (eds.) LSSC 2017. LNCS, vol. 10665, pp. 295–303. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-73441-5_31CrossRefGoogle Scholar
  19. 19.
    Lunati, I., Bernard, D., Giudici, M., Parravicini, G., Ponzini, G.: A numerical comparison between two upscaling techniques: non-local inverse based scaling and simplified renormalization. Adv. Water Resour. 24(8), 913–929 (2001)CrossRefGoogle Scholar
  20. 20.
    Mohring, J., et al.: Uncertainty quantification for porous media flow using multilevel Monte Carlo. In: Lirkov, I., Margenov, S.D., Waśniewski, J. (eds.) LSSC 2015. LNCS, vol. 9374, pp. 145–152. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26520-9_15CrossRefGoogle Scholar
  21. 21.
    Renard, P., De Marsily, G.: Calculating equivalent permeability: a review. Adv. Water Resour. 20(5–6), 253–278 (1997)CrossRefGoogle Scholar
  22. 22.
    Šukys, J., Mishra, S., Schwab, C.: Static load balancing for multi-level Monte Carlo finite volume solvers. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011. LNCS, vol. 7203, pp. 245–254. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31464-3_25CrossRefGoogle Scholar
  23. 23.
    Teckentrup, A.L., Scheichl, R., Giles, M.B., Ullmann, E.: Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients. Numer. Math. 125(3), 569–600 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Wen, X.H., Gómez-Hernández, J.J.: Upscaling hydraulic conductivities in heterogeneous media: an overview. J. Hydrol. 183(1–2), ix–xxxii (1996)Google Scholar
  25. 25.
    Whitaker, S.: Flow in porous media I: a theoretical derivation of Darcy’s law. Transp. Porous Media 1(1), 3–25 (1986)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.North-Eastern Federal UniversityYakutskRussia
  2. 2.Fraunhofer ITWMKaiserslauternGermany
  3. 3.Sofia UniversitySofiaBulgaria
  4. 4.Institute of Mathematics and InformaticsBulgarian Academy of ScienceSofiaBulgaria

Personalised recommendations