Advertisement

Kinetic Monte Carlo Analysis of the Operation and Reliability of Oxide Based RRAMs

  • Toufik SadiEmail author
  • Oves Badami
  • Vihar Georgiev
  • Asen Asenov
Conference paper
  • 9 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11958)

Abstract

By using a stochastic simulation model based on the kinetic Monte Carlo approach, we study the physics, operation and reliability of resistive random-access memory (RRAM) devices based on oxides, including silicon-rich silica (SiO\(_x\)) and hafnium oxide – HfO\(_x\) – a widely used transition metal oxide. The interest in RRAM technology has been increasing steadily in the last ten years, as it is widely viewed as the next generation of non-volatile memory devices. The simulation procedure describes self-consistently electronic charge and thermal transport effects in the three-dimensional (3D) space, allowing the study of the dynamics of conductive filaments responsible for switching. We focus on the study of the reliability of these devices, by specifically looking into how oxygen deficiency in the system affects the switching efficiency.

Keywords

Kinetic Monte Carlo RRAM reliability Nano-devices Transport phenomena 

Notes

Acknowledgment

The authors thank the Engineering and Physical Sciences Research Council (EPSRC−UK) for funding under grant agreement EP/K016776/1.

References

  1. 1.
    Chua, L.: Memristor - the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)CrossRefGoogle Scholar
  2. 2.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(43), 80–83 (2008)CrossRefGoogle Scholar
  3. 3.
    Mehonic, A., et al.: Resistive switching in silicon sub-oxide films. J. Appl. Phys. 111, 074507 (2012)CrossRefGoogle Scholar
  4. 4.
    Chua, L.: Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011)CrossRefGoogle Scholar
  5. 5.
    Yao, J., Zhong, L., Natelson, D., Tour, J.M.: In situ imaging of the conducting filament in a silicon oxide resistive switch. Sci. Rep. 2, 242 (2012)CrossRefGoogle Scholar
  6. 6.
    Yu, S., Guan, X., Wong, H.-S. P.: On the stochastic nature of resistive switching in metal oxide RRAM: physical modeling, Monte Carlo simulation, and experimental characterization. In: 2011 IEEE International Electron Devices Meeting (IEDM), p. 17.3.1, 5–7 December 2011, Washington DC, USA (2011)Google Scholar
  7. 7.
    Chae, S.C., et al.: Random circuit breaker network model for unipolar resistance switching. Adv. Mater. 20, 1154–1159 (2008)CrossRefGoogle Scholar
  8. 8.
    The ITRS Report 2013. http://www.itrs2.net/2013-itrs.html. Accessed 5 June 2018
  9. 9.
    Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010)CrossRefGoogle Scholar
  10. 10.
    Pershin, Y.V., Di Ventra, M.: Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 23, 881–886 (2010)CrossRefGoogle Scholar
  11. 11.
    Mehonic, A., Kenyon, A.J.: Emulating the electrical activity of the neuron using a silicon oxide RRAM cell. Front. Neurosci. 10, 1–10 (2016)CrossRefGoogle Scholar
  12. 12.
    Kim, S., et al.: Physical electro-thermal model of resistive switching in bi-layered resistance-change memory. Sci. Rep. 3, 1680 (2013)CrossRefGoogle Scholar
  13. 13.
    Sadi, T., Mehonic, A., Montesi, L., Buckwell, M., Kenyon, A., Asenov, A.: Investigation of resistance switching in SiO\(_x\) RRAM cells using a 3D multi-scale kinetic Monte Carlo simulator. J. Phys. Condens. Matter 30(8), 084005 (2018)CrossRefGoogle Scholar
  14. 14.
    Jegert, G.C.: Modeling of leakage currents in high-k dielectrics. Ph.D. dissertation, Technical University of Munich, Germany (2011). http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/44/011/44011419.pdf. Accessed 5 June 2018
  15. 15.
    Buckwell, M., Montesi, L., Hudziak, S., Mehonic, A., Kenyon, A.J.: Conductance tomography of conductive filaments in intrinsic silicon-rich silica RRAM. Nanoscale 7(43), 18030–18035 (2015)CrossRefGoogle Scholar
  16. 16.
    Sadi, T., et al.: Advanced physical modeling of SiO\(_x\) resistive random access memories. In: International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 6–8 September 2016, Nuremberg, Germany, pp. 149–152 (2016)Google Scholar
  17. 17.
    Brivio, S., Spiga, S.: Stochastic circuit breaker network model for bipolar resistance switching memories. J. Comput. Electron. 16(4), 1154–1166 (2017)CrossRefGoogle Scholar
  18. 18.
    Sadi, T., Asenov, A.: Microscopic KMC modeling of oxide RRAMs. In: Nikolov, G., Kolkovska, N., Georgiev, K. (eds.) NMA 2018. LNCS, vol. 11189, pp. 290–297. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-10692-8_32CrossRefGoogle Scholar
  19. 19.
    Vandelli, L., Padovani, A., Larcher, L., Southwick, R.G., Knowlton, W.B., Bersuker, G.: A physical model of the temperature dependence of the current through SiO\(_2\)/HfO\(_2\) stacks. IEEE Trans. Electron Devices 58, 2878–2887 (2011)CrossRefGoogle Scholar
  20. 20.
    Mehonic, A., et al.: Structural changes and conductance thresholds in metal-free intrinsic SiO\(_x\) resistive random access memory. J. Appl. Phys. 117, 124505 (2015)CrossRefGoogle Scholar
  21. 21.
    Sadi, T., Thobel, J.-L., Dessenne, F.: Self-consistent electrothermal Monte Carlo simulation of single InAs nanowire channel metal-insulator field-effect transistors. J. Appl. Phys. 108, 084506 (2010)CrossRefGoogle Scholar
  22. 22.
    McPherson, J., Kim, J.-Y., Shanware, A., Mogul, H.: Thermochemical description of dielectric breakdown in high dielectric constant materials. Appl. Phys. Lett. 82, 2121–2123 (2003)CrossRefGoogle Scholar
  23. 23.
    Medina-Bailon, C., et al.: Multisubband ensemble Monte Carlo analysis of tunneling leakage mechanisms in ultrascaled FDSOI, DGSOI, and FinFET devices. IEEE Trans. Electron Devices 66, 1145–1152 (2019)CrossRefGoogle Scholar
  24. 24.
    Medina-Bailon, C., et al.: Impact of the trap attributes on the gate leakage mechanisms in a 2D MS-EMC nanodevice simulator. In: Nikolov, G., Kolkovska, N., Georgiev, K. (eds.) NMA 2018. LNCS, vol. 11189, pp. 273–280. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-10692-8_30CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Toufik Sadi
    • 1
    Email author
  • Oves Badami
    • 2
  • Vihar Georgiev
    • 2
  • Asen Asenov
    • 2
  1. 1.Engineered Nanosystems Group, School of ScienceAalto UniversityAaltoFinland
  2. 2.School of Engineering, Electronic and Nanoscale EngineeringUniversity of GlasgowGlasgowScotland, UK

Personalised recommendations