In Silico Study on the Structure of Novel Natural Bioactive Peptides

  • Nevena IlievaEmail author
  • Peicho Petkov
  • Elena Lilkova
  • Tsveta Lazarova
  • Aleksandar Dolashki
  • Lyudmila Velkova
  • Pavlina Dolashka
  • Leandar Litov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11958)


Antimicrobial peptides (AMPs) are an abundant and diverse group of molecules produced by many tissues and cell types in a variety of invertebrate, plant and animal species in contact with infectious microorganisms. They play a crucial role as mediators of the primary host defense against microbial invasion. The characteristics, the broad spectrum and largely nonspecific activity of the antimicrobial peptides qualify them as possible candidates for therapeutic alternatives against multi-resistant bacterial strains.

AMPs come in nature in the form of multicomponent secretory fluids that exhibit certain biological activity. For development of biologicals with some predesignated properties separation of the individual components, their purification and activity analysis are needed. In silico experiments are designed to speedup the identification of the active components in these substances, understanding of their structural specifics and biodynamics.

Here we present the first results of a pilot in silico study on the primary structure formation of newly identified in the mucus of molluscs representatives peptides, as a prerequisite for understanding the possible role of complexation for their biological activity.


Antimicrobial peptides Mass spectrometry Primary structure Molecular modelling Folding 



This work was supported in part by the Bulgarian Ministry of Education and Science (Grant D01-217/30.11.2018) under the National Research Programme “Innovative Low-Toxic Bioactive Systems for Precision Medicine (BioActiveMed)” approved by DCM # 658/14.09.2018 and by the Bulgarian Science Fund (Grant KP-06-OPR 03-10/2018). Computational resources were provided by the HPC Cluster at the Faculty of Physics at Sofia University “St. Kl. Ohridski”.


  1. 1.
    Abraham, M.J., et al.: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015)CrossRefGoogle Scholar
  2. 2.
    Beutler, B.: Innate immunity: an overview. Mol. Immunol. 40(12), 845–859 (2004)CrossRefGoogle Scholar
  3. 3.
    Bussi, G., Donadio, D., Parrinello, M.: Canonical sampling through velocity rescaling. J. Chem. Phys. 126(1), 014101 (2007)CrossRefGoogle Scholar
  4. 4.
    Cars, O., et al.: Meeting the challenge of antibiotic resistance. BMJ 337, a1438 (2008)CrossRefGoogle Scholar
  5. 5.
    Conti, S., et al.: Structural and functional studies on a proline-rich peptide isolated from swine saliva endowed with antifungal activity towards cryptococcus neoformans. Biochim. Biophys. Acta (BBA) Biomembr. 1828(3), 1066–1074 (2013)CrossRefGoogle Scholar
  6. 6.
    Copolovici, D.M., Langel, K., Eriste, E., Langel, U.: Cell-penetrating peptides: design, synthesis, and applications. ACS Nano 8(3), 1972–1994 (2014)CrossRefGoogle Scholar
  7. 7.
    Dalgicdir, C., Globisch, C., Peter, C., Sayar, M.: Tipping the scale from disorder to alpha-helix: folding of amphiphilic peptides in the presence of macroscopic and molecular interfaces. PLoS Comput. Biol. 11(8), e1004328 (2015)CrossRefGoogle Scholar
  8. 8.
    Defer, D., et al.: Antimicrobial peptides in oyster hemolymph: the bacterial connection. Fish Shellfish Immunol. 34(6), 1439–1447 (2013)CrossRefGoogle Scholar
  9. 9.
    Dolashka, P., Dolashki, A., Voelter, W., Beeumen, J.V., Stevanovic, S.: Antimicrobial activity of peptides from the hemolymph of helix lucorum snails. Int. J. Curr. Microbiol. Appl. Sci. 4(4), 1061–1071 (2015)Google Scholar
  10. 10.
    Dolashka, P., et al.: Antimicrobial proline-rich peptides from the hemolymph of marine snail rapana venosa. Peptides 32(7), 1477–1483 (2011)CrossRefGoogle Scholar
  11. 11.
    Dolashki, A., et al.: Structure and antibacterial activity of isolated peptides from the mucus of garden snail cornu aspersum. Bul. Chem. Commun. 50(Spec. Issue C), 195–200 (2018)Google Scholar
  12. 12.
    Easton, D.M., Nijnik, A., Mayer, M.L., Hancock, R.E.: Potential of immunomodulatory host defense peptides as novel anti-infectives. Trends Biotechnol. 27(10), 582–590 (2009)CrossRefGoogle Scholar
  13. 13.
    Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G.: A smooth particle mesh ewald method. J. Chem. Phys. 103(19), 8577–8593 (1995)CrossRefGoogle Scholar
  14. 14.
    Fjell, C.D., Hiss, J.A., Hancock, R.E.W., Schneider, G.: Designing antimicrobial peptides: form follows function. Nat. Rev. Drug Discov. 11, 37–51 (2012)CrossRefGoogle Scholar
  15. 15.
    Gilliland, G., et al.: The protein data bank. Nucleic Acids Res. 28(1), 235–242 (2000). Scholar
  16. 16.
    Hess, B.: P-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 4(1), 116–122 (2008)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hockney, R., Goel, S., Eastwood, J.: Quiet high-resolution computer models of a plasma. J. Comput. Phys. 14(2), 148–158 (1974)CrossRefGoogle Scholar
  18. 18.
    Högberg, L.D., Heddini, A.: The global need for effective antibiotics: challenges and recent advances. Trends Pharmacol. Sci. 31(11), 509–515 (2010)CrossRefGoogle Scholar
  19. 19.
    Hoskin, D.W., Ramamoorthy, A.: Studies on anticancer activities of antimicrobial peptides. Biochim. Biophys. Acta (BBA) Biomembr. 1778(2), 357–375 (2008)CrossRefGoogle Scholar
  20. 20.
    Huang, J., et al.: CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2016)CrossRefGoogle Scholar
  21. 21.
    Kang, H.K., Kim, C., Seo, C.H., Park, Y.: The therapeutic applications of antimicrobial peptides (AMPs): a patent review. J. Microbiol. 55(1), 1–12 (2017)CrossRefGoogle Scholar
  22. 22.
    López-Meza, J.E., Ochoa-Zarzosa, A., Barboza-Corona, J.E., Bideshi, D.K.: Antimicrobial peptides: current and potential applications in biomedical therapies. BioMed Res. Int. 2015, 367243 (2015)CrossRefGoogle Scholar
  23. 23.
    MacKerell, A.D., et al.: All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102(18), 3586–3616 (1998)CrossRefGoogle Scholar
  24. 24.
    Marinova, R., Petkov, P., Ilieva, N., Lilkova, E., Litov, L.: Molecular dynamics study of the solution behaviour of antimicrobial peptide indolicidin. In: Georgiev, K., Todorov, M., Georgiev, I. (eds.) BGSIAM 2017. SCI, vol. 793, pp. 257–265. Springer, Cham (2019). Scholar
  25. 25.
    Parrinello, M., Rahman, A.: Crystal structure and pair potentials: a molecular-dynamics study. Phys. Rev. Lett. 45, 1196 (1980)CrossRefGoogle Scholar
  26. 26.
    Parrinello, M., Rahman, A.: Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182 (1981)CrossRefGoogle Scholar
  27. 27.
    Passarini, I., Rossiter, S., Malkinson, J., Zloh, M.: In silico structural evaluation of short cationic antimicrobial peptides. Pharmaceutics 10(3), 72 (2018)CrossRefGoogle Scholar
  28. 28.
    Peschel, A., Sahl, H.G.: The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat. Rev. Microbiol. 4, 529–536 (2006)CrossRefGoogle Scholar
  29. 29.
    Reddy, K., Yedery, R., Aranha, C.: Antimicrobial peptides: premises and promises. Int. J. Antimicrob. Agents 24(6), 536–547 (2004)CrossRefGoogle Scholar
  30. 30.
    Velkova, L., Nissimova, A., Dolashki, A., Daskalova, E., Dolashka, P., Topalova, Y.: Glycine-rich peptides from cornu aspersum snail with antibacterial activity. Bul. Chem. Commun. 50(Spec. Issue C), 169–175 (2018)Google Scholar
  31. 31.
    World Health Organization: Antimicrobial resistance: global report on surveillance (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Information and Communication Technologies at the Bulgarian Academy of SciencesSofiaBulgaria
  2. 2.Institute of Mathematics and Informatics at the Bulgarian Academy of SciencesSofiaBulgaria
  3. 3.Faculty of Physics, Atomic Physics DepartmentSofia University “St. Kliment Ohridski”SofiaBulgaria
  4. 4.Institute of Organic Chemistry with Centre of Phytochemistry at the Bulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations