Advertisement

An Introduction and Summary of Use of Optimal Control Methods for PDE’s

  • Owe AxelssonEmail author
Conference paper
  • 73 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11958)

Abstract

In optimal control formulations of partial differential equations the aim is to find a control function that steers the solution to a desired form. A Lagrange multiplier, i.e. an adjoint variable is introduced to handle the PDE constraint. One can reduce the problem to a two-by-two block matrix form with square blocks for which a very efficient preconditioner, PRESB can be applied. This method gives sharp and tight eigenvalue bounds, which hold uniformly with respect to regularization, mesh size and problem parameters, and enable use of the second order inner product free Chebyshev iteration method, which latter enables implementation on parallel computers without any need to use global data communications. Furthermore this method is insensitive to round-off errors. It outperforms other earlier published methods. Implementational and spectral properties of the method, and a short survey of applications, are given.

Keywords

Optimal control Preconditioner Inner product free 

References

  1. 1.
    Axelsson, O., Farouq, S., Neytcheva, M.: Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems: stokes control. Numer. Algorithms 74, 19–37 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Axelsson, O., Lukáš, D.: Preconditioning methods for eddy-current optimally controlled time-harmonic electromagnetic problems. J. Numer. Math. 27(1), 1–21 (2019).  https://doi.org/10.1515/jnma-2017-0064MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Liang, Z.-Z., Axelsson, O., Neytcheva, M.: A robust structured preconditioner for time-harmonic parabolic optimal control problems. Numer. Algorithms 79, 575–596 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Axelsson, O., Liang, Z.-Z.: A note on preconditioning methods for time-periodic eddy current optimal control problems. J. Comput. Appl. Math. 352, 262–277 (2019)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Axelsson, O., Neytcheva, M., Ström, A.: An efficient preconditioning method for state box-constrained optimal control problems. J. Numer. Math. 26(4), 185–207 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Axelsson, O., Blaheta, R., Kohut, R.: Preconditioning methods for high-order strongly stable time integration methods with an application for a DAE problem. Numer. Linear Algebra Appl. 22(6), 930–949 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Axelsson, O., Liang, Z.-Z.: An optimal control framework for the iterative solution of a missing boundary data problem. Work in ProgressGoogle Scholar
  8. 8.
    Pearson, J.W., Wathen, A.J.: A new approximation of the Schur complement in preconditioners for PDE-constrained optimization. Numer. Linear Algebra Appl. 19(5), 816–829 (2012) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Axelsson, O., Salkuyeh, D.K.: A new version of a preconditioning method for certain two-by-two block matrices with square blocks. BIT Numer. Math. 59(2), 321–342 (2019)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bai, Z.Z., Benzi, M., Chen, F., Wang, Z.Q.: Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems. IMA J. Numer. Anal. 33(1), 343–369 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Axelsson, O., Vassilevski, P.S.: Algebraic multilevel preconditioning methods, II. SIAM J. Numer. Anal. 27, 1569–1590 (1990)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1994)CrossRefGoogle Scholar
  13. 13.
    Saad, Y.: A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14(2), 461–469 (1993)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Varga, R.S.: Matrix Iterative Analysis. Springer, Heidelberg (2000).  https://doi.org/10.1007/978-3-642-05156-2. Originally published by Prentice-Hall 1962 editionCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of GeonicsThe Czech Academy of SciencesOstravaCzech Republic
  2. 2.Department of Information TechnologyUppsala UniversityUppsalaSweden

Personalised recommendations