Weighted Time-Semidiscretization Quasilinearization Method for Solving Rihards’ Equation

  • Miglena N. Koleva
  • Lubin G. VulkovEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11958)


This paper concerns efficient \(\sigma \) - weighted (\(0<\sigma <1\)) time-semidiscretization quasilinearization technique for numerical solution of Richards’ equation. We solve the classical and a new \(\alpha \) - time-fractional (\(0<\alpha <1\)) equation, that models anomalous diffusion in porous media. High-order approximation of the \(\alpha =2(1-\sigma )\) fractional derivative is applied. Numerical comparison results are discussed.



This research is supported by the Bulgarian National Science Fund under Bilateral Project DNTS/Russia 02/12 from 2018.


  1. 1.
    Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arbogast, T., Taicher, A.L.: A cell-centered finite difference method for a denerate elliptic equation arising from two-phase mixtures. Comput. Geosci. 21(4), 700–712 (2017)CrossRefGoogle Scholar
  3. 3.
    Bellman, R., Kalaba, R.: Quasilinearization and Nonlinear Boundary-Value Problems. Elsevier Publishing Company, New York (1965)zbMATHGoogle Scholar
  4. 4.
    Casulli, V., Zanolli, P.: A nested Newton-type algorithm for finite volume methods solving Richards’ equation in mixed form. SIAM J. Sci. Comput. 32, 2255–2273 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Celia, M., Boulout, F., Zarba, R.L.: A general mass-conservativ numerical solution for the unsaturated flow equation. Water Resour. Res. 26(7), 1483–1496 (1990)CrossRefGoogle Scholar
  6. 6.
    Dimitrov, Y.: Three-point approximation for the Caputo fractional derivative. Commun. Appl. Math. Comput. 31(4), 413–442 (2017)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Evans, C., Pollock, S., Rebholz, L.G., Xiao, M.: A proof that Anderson acceleration increases the convergence rate in linearly converging fixed point methods (but not in quadratically converging ones). arXiv:1810.08455v1 [math.NA], 19 October 2018
  8. 8.
    Gerolymatou, E., Vardoulakis, I., Hilfer, R.: Modelling infiltration by means of a nonlinear fractional diffusion model. J. Phys. D Appl. Phys. 39, 4104–4110 (2006)CrossRefGoogle Scholar
  9. 9.
    Gerolymatou, E., Vardoulakis, I., Hilfer, R.: Simulating the saturation front using a fractional diffusion model. In: 5th GRACM International Congress on Computational Mechanics Limassol, 29 June–1 July 2005 (2005).
  10. 10.
    van Genuchten, M.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)CrossRefGoogle Scholar
  11. 11.
    Koleva, M., Vulkov, L.: Two-grid quasilinearization approach to ODEs with applications to model problems in physics and mechanics. Comput. Phys. Commun. 181, 663–670 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Koleva, M., Vulkov, L.: Numerical solution of time-fractional Black-Scholes equation. Comput. Appl. Math. 36(4), 1699–1715 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Misiats, O., Lipnikov, K.: Second-order accurate finite volume scheme for Richards’ equation. J. Comput. Phys. 239, 125–137 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mitra, K., Pop I.S.: A modified L-scheme to solve nonlinear diffusion problems. Comput. Math. Appl. (in press).
  15. 15.
    Pachepsky, Y., Timlin, D., Rawls, W.: Generalized Richards’ equation to simulate water transport in saturated soils. J. Hydrol. 272, 3–13 (2003)CrossRefGoogle Scholar
  16. 16.
    Popova, Z., Crevoisier, D., Mailhol, J., Ruelle, P.: Assessment and simulation of water and nitrogen transfer under furrow irrigation: application of hydrus2D model to simulate nitrogen transfer. In: ICID 22nd European Regional Conference 2007, Pavia, Italy, 2–7 September 2007 (2007).
  17. 17.
    Richards, L.A.: Capillary conduction of liquids through porous mediums. Physics 1(5), 318–333 (1931)CrossRefGoogle Scholar
  18. 18.
    Zadeh, K.S.: A mass-conservative switching algorithm for modeling fluid flow in variably saturated porous media. J. Comput. Phys. 230, 664–679 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of RuseRuseBulgaria

Personalised recommendations