Advertisement

Modelling Road Saturation Dynamics on a Complex Transportation Network Based on GPS Navigation Software Data

  • Mariana Cubero-CorellaEmail author
  • Esteban Durán-Monge
  • Warner Díaz
  • Esteban Meneses
  • Steffan Gómez-Campos
Conference paper
  • 23 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1087)

Abstract

High traffic concentration during weekdays in the Great Metropolitan Area of Costa Rica causes severe traffic congestion and high costs for the population. It is crucial to deeply understand the dynamics of traffic congestion to design and implement long term solutions. Given the lack of official data to study traffic congestion, we model it using a transportation network based on data captured throughout the year 2018 by a GPS navigation software application (Waze), provided by the Ministry of Public Works and Transportation (MOPT in Spanish). In this paper, we focus on the data transformation procedure to create the transportation network and propose a traffic congestion classification with the available data. We developed a practical methodology which consists of four main stages: data preparation, road network modelling, road saturation estimation, and saturation dynamics analysis. The results show it is possible to model road saturation level using the proposed methodology. We were able to classify road segments in five categories that effectively represent the levels of road saturation. This classification gives us a clear overview of the real-world conditions faced by road network users.

Keywords

Delay Traffic jam Transportation network Urban mobility Waze 

References

  1. 1.
    Bivand, R.S., Pebesma, E., Gomez-Rubio, V.: Applied Spatial Data Analysis with R, Second edn. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-1-4614-7618-4, http://www.asdar-book.org/
  2. 2.
    Corporation, M., Weston, S.: doParallel: Foreach Parallel Adaptor for the ‘parallel’ Package (2018). https://CRAN.R-project.org/package=doParallel, r package version 1.0.14
  3. 3.
    Duran, E., Leon, J.: Technical report (2018)Google Scholar
  4. 4.
    Gebetsroither-Geringer, E., Stollnberger, R., Peters-Anders, J.: Interactive spatial web-applications as new means of support for urban decision-making processes. ISPRS Ann. Photogram. Remote Sens. Spatial Inf. Sci. IV-4/W7, 59–66 (2018).  https://doi.org/10.5194/isprs-annals-iv-4-w7-59-2018
  5. 5.
    Hijmans, R.J.: geosphere: Spherical Trigonometry (2019). https://CRAN.R-project.org/package=geosphere, r package version 1.5-10
  6. 6.
    Hijmans, R.J.: raster: Geographic Data Analysis and Modeling (2019). https://CRAN.R-project.org/package=raster, r package version 2.9-5
  7. 7.
    Hong, J.H., Chiew, Y.M., Cheng, N.S.: Scour Caused by a Propeller Jet, vol. 139 (2013)Google Scholar
  8. 8.
    Huang, Y.F., Lin, J.Y., Hsu, C.H., Boonyos, S., Wen, J.H.. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Google Scholar
  9. 9.
    José, S., Rica, C.: Compendio de datos del país (2014)Google Scholar
  10. 10.
    Lu, B., Sun, H., Harris, P., Xu, M., Charlton, M.: Shp2graph: tools to convert a spatial network into an igraph graph in R. ISPRS Int. J. Geo-Inf. 7(8), 293 (2018).  https://doi.org/10.3390/ijgi7080293
  11. 11.
    Microsoft, Weston, S.: foreach: Provides Foreach Looping Construct for R (2017). https://CRAN.R-project.org/package=foreach, r package version 1.4.4
  12. 12.
    Moore, E.J., Kichainukon, W., Phalavonk, U.: Maximum flow in road networks with speed-dependent capacities-application to Bangkok traffic. Songklanakarin J. Sci. Technol. 35(4), 489–499 (2013)Google Scholar
  13. 13.
    Pebesma, E.: Simple features for R: standardized support for spatial vector data. R J. 10(1), 439–446 (2018).  https://doi.org/10.32614/RJ-2018-009
  14. 14.
    Pebesma, E.J., Bivand, R.S.: Classes and methods for spatial data in R. R News 5(2), 9–13 (2005). https://CRAN.R-project.org/doc/Rnews/
  15. 15.
    PEN-CONARE: Informe estado de la nación 2018. Programa Estado de la Nación, i edn. (1383)Google Scholar
  16. 16.
    Programa Estado de la Nación: Debates para el desarrollo. Technical reportGoogle Scholar
  17. 17.
    R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2019). https://www.R-project.org/
  18. 18.
  19. 19.
    Zhang, G., Chen, J.: Study on saturation flow rates for signalized intersections. In: 2009 International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2009, vol. 3, pp. 598–601 (2009).  https://doi.org/10.1109/ICMTMA.2009.451

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mariana Cubero-Corella
    • 1
    Email author
  • Esteban Durán-Monge
    • 2
  • Warner Díaz
    • 1
    • 2
  • Esteban Meneses
    • 1
    • 3
  • Steffan Gómez-Campos
    • 2
  1. 1.Advanced Computing LaboratoryCosta Rica National High Technology Center (CeNAT)San JoséCosta Rica
  2. 2.State of the Nation ProgramSan JoséCosta Rica
  3. 3.School of ComputingCosta Rica Institute of TechnologyCartagoCosta Rica

Personalised recommendations