Advertisement

Improvement of Binary and Non Binary Statistical Decoding Algorithm

  • Pierre-Louis Cayrel
  • Cheikh Thiécoumba Gueye
  • Junaid Ahmad KhanEmail author
  • Jean Belo Klamti
  • Edoardo Persichetti
Conference paper
  • 10 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11975)

Abstract

The security of McEliece’s cryptosystem relies heavily on the hardness of decoding a random linear code. The best known generic decoding algorithms are derived from the Information-Set Decoding (ISD) algorithm. This was first proposed in 1962 by Prange and subsequently improved in 1989 by Stern and later in 1991 by Dumer. In 2001 Al Jabri introduced a new decoding algorithm for general linear block codes which does not belong to this family, called Statistical Decoding (SD). Since then, like for the Information Set Decoding algorithm, there have been numerous work done to improve and generalize the SD algorithm. In this paper, we improve the SD algorithm using the notion of bases lists in binary case. Then, we give a non binary version of this improvement. Finally, we have computed complexity analysis and have made a complexity comparison of our results with that of recent results on SD algorithm and complexity of classic ISD algorithm.

Keywords

Code-based cryptography Statistical decoding McEliece system Linear block code Base list MO-fusion 

References

  1. 1.
    Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes in \(2^{n/20}\): How 1 + 1 = 0 improves information set decoding. In: Eurocrypt 2012 (2012)Google Scholar
  2. 2.
    Debris-Alazard, T., Tillich, J.-P.: Statistical decoding (2017). CoRR, abs/1701.07416,Google Scholar
  3. 3.
    Fossorier, M.P.C., Kobara, K., Imai, H.: Modeling bit flipping decoding based on nonorthogonal check sums with application to iterative decoding attack of mceliece cryptosystem. IEEE Trans. Inf. Theory 53(1), 402–411 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Gueye, C.T., Klamti, J.-B., Hirose, S.: Generalization of BJMM-ISD using may-ozerov nearest neighbor algorithm over an arbitrary finite field \(\mathbb{F}_q\). In: El Hajji, S., Nitaj, A., Souidi, E.M. (eds.) Codes. Cryptology and Information Security: Second International Conference, C2SI 2017, Rabat, Morocco, April 10–12, 2017, Proceedings - In Honor of Claude Carlet, pp. 96–109. Springer International Publishing, Cham (2017).  https://doi.org/10.1007/978-3-319-55589-8_7CrossRefGoogle Scholar
  5. 5.
    Hirose, S.: May-ozerov algorithm for nearest-neighbor problem over \(\mathbb{F}_q\) and its application to information set decoding. Cryptology ePrint Archive, Report 2016/237 (2016). http://eprint.iacr.org/
  6. 6.
    Jabri, A.A.: A statistical decoding algorithm for general linear block codes. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 1–8. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45325-3_1CrossRefGoogle Scholar
  7. 7.
    May, A., Meurer, A., Thomae, E.: Decoding random linear codes in \(\tilde{\cal{O}}(2^{0.054n})\). In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25385-0_6CrossRefzbMATHGoogle Scholar
  8. 8.
    May, A., Ozerov, I.: On computing nearest neighbors with applications to decoding of binary linear codes. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 203–228. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46800-5_9CrossRefGoogle Scholar
  9. 9.
    McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DNS Progress Report, pp. 114–116 (1978)Google Scholar
  10. 10.
    Moon, T.K.: Error Correction Coding: Mathematical Methods and Algorithms. Wiley, New York (2005)CrossRefGoogle Scholar
  11. 11.
    Niebuhr, R.: Statistical decoding of codes over \(\mathbb{F}_q\). In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 217–227. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25405-5_14CrossRefGoogle Scholar
  12. 12.
    Overbeck, R.: Statistical decoding revisited. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 283–294. Springer, Heidelberg (2006).  https://doi.org/10.1007/11780656_24CrossRefGoogle Scholar
  13. 13.
    Peters, C.: Information-set decoding for linear codes over \(\mathbb{F}_{q}\). In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 81–94. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-12929-2_7CrossRefGoogle Scholar
  14. 14.
    Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf. Theory 8(5), 5–9 (1962)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Stern, J.: A method for finding codewords of small weight. In: Proceedings of Coding Theory and Applications, pp. 106–113 (1989)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Pierre-Louis Cayrel
    • 1
  • Cheikh Thiécoumba Gueye
    • 2
  • Junaid Ahmad Khan
    • 3
    Email author
  • Jean Belo Klamti
    • 2
  • Edoardo Persichetti
    • 4
  1. 1.Laboratoire Hubert Curien, UMR CNRS 5516Saint-EtienneFrance
  2. 2.Université Cheikh Anta Diop, Faculté des Sciences et Techniques, DMI, LACGAADakarSenegal
  3. 3.Dongguk UniversitySeoulSouth Korea
  4. 4.Department of Mathematical SciencesFlorida Atlantic UniversityBoca RatonUSA

Personalised recommendations