Leveraging Ontologies for Natural Language Processing in Enterprise Applications

  • Tatiana Erekhinskaya
  • Matthew MorrisEmail author
  • Dmitriy Strebkov
  • Dan Moldovan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11878)


The recent advances in Artificial Intelligence and Deep Learning are widely used in real-world applications. Enterprises create multiple corpora and use them to train machine learning models for various applications. As the adoption becomes more widespread, it raises further concerns in areas such as maintenance, governance and reusability. This paper will explore the ways to leverage ontologies for these tasks in Natural Language Processing. Specifically, we explore the usage of ontologies as a schema, configuration and output format. The approach described in the paper are based on our experience in a number of projects for medical, enterprise and national security domains.


Ontology Natural language processing Annotation Configuration Named entity extractions Semantic relations 


  1. 1.
    Arp, R., Smith, B., Spear, A.D.: Building Ontologies with Basic Formal Ontology. The MIT Press, Cambridge (2015)CrossRefGoogle Scholar
  2. 2.
    Baker, C.F., Fillmore, C.J., Lowe, J.B.: The Berkeley FrameNet project. In: Proceedings of the 17th International Conference on Computational Linguistics - Volume 1, COLING 1998, pp. 86–90. Association for Computational Linguistics, Stroudsburg (1998).
  3. 3.
    Batra, S., Sachdeva, S., Bhalla, S.: Entity attribute value style modeling approach for archetype based data. Information 9, 2 (2017)CrossRefGoogle Scholar
  4. 4.
    Bennett, M.: The financial industry business ontology: best practice for big data. J. Bank. Regul. 14(3–4), 255–268 (2013)CrossRefGoogle Scholar
  5. 5.
    Brickley, D., Guha, R.: RDF Vocabulary Description Language 1.0: RDF Schema. W3C Recommendation, World Wide Web Consortium (2004).
  6. 6.
    Chen, P.P.: The entity-relationship model - toward a unified view of data. ACM Trans. Database Syst. 1(1), 9–36 (1976)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Demey, Y.T.: Adapting the fact-based modeling approach in requirement engineering. In: Meersman, R., et al. (eds.) OTM 2014. LNCS, vol. 8842, pp. 65–69. Springer, Heidelberg (2014). Scholar
  8. 8.
    Ferrucci, D., Lally, A., Verspoor, K., Nyberg, E.: Unstructured information management architecture (UIMA) version 1.0. OASIS Standard (2009).
  9. 9.
    Hellmann, S., Lehmann, J., Auer, S., Brümmer, M.: Integrating NLP using linked data. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, pp. 98–113. Springer, Heidelberg (2013). Scholar
  10. 10.
    Hills, T.: NoSQL and SQL Data Modeling: Bringing Together Data, Semantics, and Software, 10, vol. 4, 1st edn. Technics Publications, Basking Ridge (2016)Google Scholar
  11. 11.
    Martinez-Rodriguez, J.L., Hogan, A., Lopez-Arevalo, I.: Information extraction meets the semantic web: a survey. Semantic Web, pp. 1–81, October 2018.
  12. 12.
    Niles, I., Pease, A.: Towards a standard upper ontology. In: Proceedings of the International Conference on Formal Ontology in Information Systems - Volume 2001. pp. 2–9. FOIS 2001. ACM, New York (2001).
  13. 13.
    Noy, N.F., Mcguinness, D.L.: Ontology development 101: a guide to creating your first ontology. Technical report (2001)Google Scholar
  14. 14.
    Publio, G.C., et al.: ML-Schema: exposing the semantics of machine learning with schemas and ontologies. CoRR abs/1807.05351 (2018).
  15. 15.
    Rak, R., Ananiadou, S.: Making UIMA truly interoperable with SPARQL. In: Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with Discourse, pp. 89–97. Association for Computational Linguistics, Sofia, August 2013.
  16. 16.
    Sackett, D.L., Richardson, W.S., Rosenberg, W., Haynes, R.B.: How to Practice and Teach Evidence-Based Medicine, pp. 118–128. Churchill Livingstone, New York (1997)Google Scholar
  17. 17.
    Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou, S., Tsujii, J.: BRAT: a web-based tool for NLP-assisted text annotation. In: Proceedings of the Demonstrations at the 13th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2012, pp. 102–107, Association for Computational Linguistics, Stroudsburg (2012).
  18. 18.
    Tarasov, V., Seigerroth, U., Sandkuhl, K.: Ontology development strategies in industrial contexts. In: Abramowicz, W., Paschke, A. (eds.) BIS 2018. LNBIP, vol. 339, pp. 156–167. Springer, Cham (2019). Scholar
  19. 19.
    Troncy, R., Bruemmer, M.: Nerd meets NIF: Lifting NLP extraction results to the linked data cloud. In: Proceedings of the 5th International Workshop on Linked Data on the Web, LDOW 2012 (2012)Google Scholar
  20. 20.
    Uschold, M., Gruninger, M.: Ontologies: principles, methods and applications. Knowl. Eng. Rev. 11(2), 93–136 (1996). Scholar
  21. 21.
    Wongthongtham, P., Kasisopha, N., Chang, E., Dillon, T.: A software engineering ontology as software engineering knowledge representation. In: 2008 Third International Conference on Convergence and Hybrid Information Technology. vol. 2, pp. 668–675, November 2008.
  22. 22.
    Ziad, H., McCrae, J.P., Buitelaar, P.: Teanga: a linked data based platform for natural language processing. In: Proceedings of the Eleventh International Conference on Language Resources and Evaluation, LREC 2018. European Languages Resources Association (ELRA), Miyazaki, Japan, May 2018.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Tatiana Erekhinskaya
    • 1
  • Matthew Morris
    • 1
    Email author
  • Dmitriy Strebkov
    • 2
  • Dan Moldovan
    • 1
  1. 1.Lymba CorporationRichardsonUSA
  2. 2.MoscowRussia

Personalised recommendations