Advertisement

Word Meaning, Data Semantics, Crowdsourcing, and the BKM/A-Lex Approach

  • Thomas Nobel
  • Stijn HoppenbrouwersEmail author
  • Jan Mark Pleijsant
  • Mats Ouborg
Conference paper
  • 22 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11878)

Abstract

The lexical definition of concepts is an integral part of Fact Based Modelling. More in general, structured description of term meaning, in many forms and guises, has since the early days played a role in information systems (data dictionaries, data modelling), data management (business glossaries for data governance), knowledge engineering (applied logic, rule definition and management), and the Semantic Web (RDF). We observe that at the core of many different approaches to lexical meaning lies the combination of semantic networks and textual definitions, and propose to re-appreciate these relatively simple basics as the theoretical but also, and perhaps more so, the practical core of dealing with Data Semantics. We also explore some fundamental concepts from cybernetics, providing some theoretical basis for advocating crowdsourcing as a way of taking up a continuous lexical definition in and across domain communities. We discuss and compare various combined aspects in lexical definition approaches from various relevant fields in view of the A-Lex tool, which supports a crowdsourcing approach to the lexical definition in a data management context: Business Knowledge Mapping. We explain why this approach indeed applies most of the core concepts of “word meaning as a vehicle for dealing with data semantics in and across communities”.

Keywords

Data semantics Semantic networks Lexical definition crowdsourcing Fact Based Modelling Collaborative modelling 

References

  1. 1.
    Achterbergh, J., Vriens, D.: Organisations: Social Systems Conducting Experiments. Springer, New York (2009). doi:  https://doi.org/10.1007/978-3-642-00110-9
  2. 2.
    De Beule, J., Stadler, K.: An evolutionary cybernetics perspective on language and coordination. New Ideas Psychol. 32, 118–130 (2014).  https://doi.org/10.1016/j.newideapsych.2013.03.003CrossRefGoogle Scholar
  3. 3.
    van Bommel, P.: Foundations of Informations Systems (2019)Google Scholar
  4. 4.
    Cram, A., Kuswara, A., Richards, D.: Web 2.0 supported collaborative learning activities: towards an affordance perspective. In: Proceedings of the 3rd International LAMS & Learning Design Conference 2008: Perspectives on Learning Design, pp. 70–80. LAMS Foundation, Sydney (2008)Google Scholar
  5. 5.
    Fellbaum, C.: Large-scale lexicography in the digital age. Int. J. Lexicogr. 27, 378–395 (2014).  https://doi.org/10.1093/ijl/ecu018CrossRefGoogle Scholar
  6. 6.
    Goodchild, M.: Citizen as voluntary sensors: spatial data infrastructure in the world of Web 2.0. Int. J. Spat. Data Infrastruct. Res. 2, 24–32 (2007)Google Scholar
  7. 7.
    Gruber, J.: Ontology of folksonomy: a mash-up of apples and oranges. Int. J. Semant. Web Inf. Syst. 3, 1–11 (2007)CrossRefGoogle Scholar
  8. 8.
    Halpin, T.: Conceptual Schema and Relational Database Design, 2nd edn. Prentice Hall, New Jersey (1995)Google Scholar
  9. 9.
    Hesse, W., Verrijn-Stuart, A.: Towards a theory of information systems: the FRISCO approach (2000)Google Scholar
  10. 10.
    Hoppenbrouwers, Stijn, Proper, Henderik A., Nijssen, Maurice: Towards Key Principles of Fact Based Thinking. In: Debruyne, Christophe, Panetto, Hervé, Guédria, Wided, Bollen, Peter, Ciuciu, Ioana, Meersman, Robert (eds.) OTM 2018. LNCS, vol. 11231, pp. 77–86. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-11683-5_8CrossRefGoogle Scholar
  11. 11.
    Hoppenbrouwers, S.: Freezing language, conceptualisation processes across ICT-supported organisations. Ph.D. thesis, Radboud University, Nijmegen (2003)Google Scholar
  12. 12.
    Hoppenbrouwers, S., Weigand, H.: Meta-communication in the language-action perspective. In: Schoop, M., Quix, C. (eds.) Proceedings of the 5th International Workshop on the Language-Action Perspective on Communication Modelling (LAP 2000), pp. 131–149. RWTH Aachen, Aachen (2000). (AIB Aachener Informatik-Berichte; No. 2000–6)Google Scholar
  13. 13.
    Hoppenbrouwers, J.: Conceptual modelling and the Lexicon. Ph.D. thesis, Tilburg University, Tilburg (1997)Google Scholar
  14. 14.
    IBM: IBM Dictionary of Computing, 10th edn. McGraw-Hill Inc, New York (1993)Google Scholar
  15. 15.
    Jambhulkar, S. V., Karale, S. J.: WordNet: semantic web application generation using Protg tool. In: 2016 Online International Conference on Green Engineering and Technologies (IC-GET), pp. 1–5. IEEE, Piscataway (2016). doi: 10.1109/GET.2016.7916686Google Scholar
  16. 16.
    Levy, M.: WEB 2.0 implications on knowledge management. J. Knowl. Manage. 13, 120–137 (2009). doi: 10.1108/13673270910931215Google Scholar
  17. 17.
    Miller, E.: An introduction to the resource description framework. Bull. Am. Soc. Inf. Sci. Technol. 25, 15–19 (1998).  https://doi.org/10.1002/bult.105CrossRefGoogle Scholar
  18. 18.
    Miller, G.: WordNet: a lexical database for English. Commun. ACM 38, 1–13 (1995).  https://doi.org/10.1145/219717.219748CrossRefGoogle Scholar
  19. 19.
    Murugesan, S.: Understanding Web 2.0. IT Prof. 9, 34–41 (2007). doi:  https://doi.org/10.1109/MITP.2007.78
  20. 20.
    Oude Luttighuis, P., Bodenstaff, L.: The Essence Language, version 2. Essence Project (2013)Google Scholar
  21. 21.
    Peters, I., Stock, W.: Folksonomy and information retrieval. Proc. Am. Soc. Inf. Sci. Technol. 44, 1–28 (2008).  https://doi.org/10.1002/meet.1450440226CrossRefGoogle Scholar
  22. 22.
    Pleijsant, Jan Mark: Scale Your Information Modeling Effort Using the Power of the Crowd. In: Debruyne, Christophe, Panetto, Hervé, Guédria, Wided, Bollen, Peter, Ciuciu, Ioana, Meersman, Robert (eds.) OTM 2018. LNCS, vol. 11231, pp. 159–170. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-11683-5_17CrossRefGoogle Scholar
  23. 23.
    Steels, L.: Self-organization and selection in cultural language evolution. In: Experiments in Cultural Language Evolution, pp. 1–37. John Benjamins, Amsterdam (2012). doi: 10.1075/ais.3.02steGoogle Scholar
  24. 24.
    Wei, T., Lu, Y., Huiyou, C., Zhou, Q., Bao, X.: A semantic approach for text clustering using WordNet and lexical chains. Expert Syst. Appl. 42, 2264–2275 (2015).  https://doi.org/10.1093/ijl/ecu018CrossRefGoogle Scholar
  25. 25.
    What is Wordnet? https://wordnet.princeton.edu/. Accessed 6 July 2019

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Radboud UniversityNijmegenThe Netherlands
  2. 2.HAN University of Applied SciencesArnhemThe Netherlands
  3. 3.ABN AMRO BankAmsterdamThe Netherlands

Personalised recommendations