Advertisement

Heatmetry pp 87-174 | Cite as

Validation and Science Experiment

  • Sergey Z. SapozhnikovEmail author
  • Vladimir Yu. Mityakov
  • Andrey V. Mityakov
Chapter
  • 27 Downloads
Part of the Heat and Mass Transfer book series (HMT)

Abstract

The reliability heatmetry as a new approach to investigating heat transfer can be verified only by testing of the phenomena already well-studied by other experimental methods, supported by analytical descriptions, etc.

References

  1. 1.
    Nikolskaya, S. B., & Chumakov, Yu. S. (2000). Eksperimental’noye issledovaniye pul’satsionnogo dvizheniya v svobodno-konvektivnom pogranichnom sloye (An experimental study of pulsation motion in a free-convective boundary layer). In Hight temperature (Vol. 38, no. 2, pp. 249–256). Moscow.Google Scholar
  2. 2.
    Mityakov, V. Yu., Mityakov, A. V., Sapozhnikov, S. Z., et al. (2002). Ispol’zovaniye poperechnogo effekta Zeyebeka dlya izmereniya mgnovennogo znacheniya teplovogo potoka na vertikal’noy nagretoy poverkhnosti v usloviyakh svobodno-konvektivnogo teploobmena (Using the transverse Seebeck effect to measure the instantaneous value of the heat flux on a vertical heated surface under conditions of free convective heat transfer). In Hight temperature (Vol. 40, no. 4, pp. 647–669). Moscow.Google Scholar
  3. 3.
    Kuzmitsky, O. A., Nikolskaya, S. B., & Chumakov, Yu. S. (1996). Spektral’nyye i korrelyatsionnyye kharakteristiki pul’satsiy skorosti i temperatury v svobodno-konvektivnom pogranichnom sloye (Spectral and correlation characteristics of velocity and temperature pulsations in a freely convective boundary layer). In 3rd Minsk International Forum on Heat and Mass Transfer, Minsk 1996 (Vol. 1, no. 2, pp. 117–122).Google Scholar
  4. 4.
    Kuzmitsky, O. A., & Chumakov, Yu. S. (1990). Struktura temperaturnogo polya v svobodnokonvektivnom pogranichnom sloye okolo vertikal’noy izotermicheskoy poverkhnosti (The structure of the temperature field in a free convective boundary layer near a vertical isothermal surface). In Hight temperature, (Vol. 28, no. 6, pp. 1142–1148). Moscow.Google Scholar
  5. 5.
    Bobashev, S. V., Mende, N. P., Sakharov, V. A., et al. (2004). Vozmozhnosti gradiyentnykh datchikov pri issledovanii protsessov v udarnykh trubakh (Possibilities of gradient sensors in the study of processes in shock tubes). In VII Siberian Thermophysical Workshop, Novosibirsk, 2004.Google Scholar
  6. 6.
    Bobashev, S. V., Mende, N. P., & Sakharov, V. A. (2005). Primeneniye datchika gradiyentnogo teplovogo potoka v eksperimentakh s udarnymi trubami (Application of gradient heat flux sensor in shock tube experiments). In 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 10–13 January 2005.Google Scholar
  7. 7.
    Chumakov, Y. S., & Nikolskaja, S. B. (1998). Features of dynamic and heat structure of free convection boundary layer near vertical heated surface. In Turbulent heat transfer-2 (Vol. 2, pp. 9–19). Manchester.Google Scholar
  8. 8.
    Akylbaev, Zh. S., Isataev, S. I., & Polzik, V. V. (1972). Sryv vikhrey s poverkhnosti plokhoobtekayemykh tel i yego vliyaniye na teploobmen (Disruption of vortices from the surface of poorly streamlined bodies and its effect on heat transfer). Teplo - i massoperenos, 1(1), 291–295.Google Scholar
  9. 9.
    Dyban, E. P., Epic, E. Ya., & Kozlova, L. G. (1975). Sovmestnoye vliyaniye stepeni prodol’nogo masshtaba turbulentnosti i uskorennosti vozdushnogo potoka na teploobmen krugovogo tsilindra (The joint influence of the degree of the longitudinal scale of turbulence and the acceleration of air flow on the heat transfer of a circular cylinder). In Teploobmen 1974. Sovetskiye issledovaniya (pp. 110–116). Moscow: Nauka.Google Scholar
  10. 10.
    Zhukauskas, A. A. (1982). Konvektivnyy perenos v teploobmennikakh (Convective transfer in heat exchangers). Moscow: Nauka.Google Scholar
  11. 11.
    Oka, S. (1974). Teploobmen odinochnogo tsilindra pri razlichnykh usloviyakh obtekaniya (Heat transfer of a single cylinder under various flow conditions). In Problemy teplofiziki i fizicheskoy gidrodinamiki, Novosibirsk, 1974. Collection of scientific papers (pp. 47–71). Nauka.Google Scholar
  12. 12.
    Chzhen, P. (1973). Otryvnyye techeniya (Separate currents) (pp. 1–3). Moscow: Mir.Google Scholar
  13. 13.
    Chzhen, P. (1979). Upravleniye otryvom potoka (Management of flow separation). Moscow: Mir.Google Scholar
  14. 14.
    Achenbach, E. (1966). Distribution of local pressure and skin friction around a circular cylinder in cross-flow up to Re \(= 5\times 10^{6}\). Journal of Fluid Mechanics, 34(625), 639.Google Scholar
  15. 15.
    Achenbach, E. (1975). Total and local heat transfer from a smooth circular cylinder in cross-flow at high Reynolds number. Heat and Mass Transfer, 18(11), 1387–1396.Google Scholar
  16. 16.
    Chang, B. H., & Mills, A. F. (2004). Effect of aspect ratio on forced convection heat transfer from cylinders. Heat Mass Transfer, 47, 1289–1296.CrossRefGoogle Scholar
  17. 17.
    Nakamura, H., & Igarashi, T. (2002) Unsteady heat transfer in separated flow behind a circular cylinder. In 12th International Heat Transfer Conference, Grenoble, France, 2002 (Vol. 2, pp. 729–734).Google Scholar
  18. 18.
    Kutateladze, S. S. (1990). Teploperedacha i gidrodinamicheskoye soprotivleniye: Spravochnoye posobiye (Heat transfer and hydrodynamic resistance. A reference guide). Moscow: Energoatomizdat.Google Scholar
  19. 19.
    Maher, J., & David, C. (1974). Dynamics of heat transfer from cylinders in a turbulent air stream. Heat and Mass Transfer, 17, 767–783.CrossRefGoogle Scholar
  20. 20.
    Sergeyev, O. A. (1972). Metrologicheskiye osnovy teplofizicheskikh izmereniy (Metrological foundations of thermophysical measurements). Moscow: Izdatel’stvo standartov.Google Scholar
  21. 21.
    Sagittarius, M. H. (2001). Metod modelirovaniya otsoyedinennykh vikhrey i yego primeneniye dlya rascheta otryvnykh turbulentnykh techeniy (The method of modeling detached eddies and its application for calculating separated turbulent flows). In School-Seminar for Young Scientists and Specialists, Moscow Power Engineering Institute, Moscow.Google Scholar
  22. 22.
    Strelets, M. (2001). Detached eddy simulation of massively separated flows. In AIAA (18 pp.).Google Scholar
  23. 23.
    Boulos, M. J., & Pei, D. C. T. (1974). Dynamics of heat transfer from cylinders in a turbulent air stream. Heat Mass Transfer, 17, 767–783.Google Scholar
  24. 24.
    Liu, C., Tai, Y. C., Huang, J. B., & Ho, C. M. (1994). Surface micromachined thermal shear stress sensor. In Application of Microfabrication to Fluid Mechanics 1994 presented at 1994 ASME International Mechanical Engineering Congress and Exposition, Chicago, USA.Google Scholar
  25. 25.
    Agapiev, B. D., Belov, V. N., & Kesamanly, F. P. (1999). Obrabotka eksperimental’nykh dannykh (Processing of experimental data: Textbook allowance). Saint-Petersburg: SPbGTU.Google Scholar
  26. 26.
    Dyakonov, V. P. (1987). Spravochnik po algoritmam i programmam na yazyke Beysik dlya personal’nykh EVM (Reference on algorithms and programs in the BASIC language for personal computers). Moscow: Nauka.Google Scholar
  27. 27.
    Rowe, D. M. (Ed.). (1995). CRC handbook of thermoelectrics. London, New York, Washington: Boca Raton.Google Scholar
  28. 28.
    Goldstein, S. (Ed.). (1948). Sovremennoye sostoyaniye gidrodinamiki vyazkoy zhidkosti (Current state of viscous fluid hydrodynamics).Google Scholar
  29. 29.
    Fage, A., & Falkner, V. M. (1930). An experimental determination of the intensity of friction on the surface of an airfoil. London: Proceedings of the Royal Society.Google Scholar
  30. 30.
    Babich, A. Y., Zainullina, E. R., Sapozhnikov, S. Z., et al. (2017). Hydrodynamics and heat transfer of yawed circular cylinder. Heat and Mass Transfer, 115, 333–339.Google Scholar
  31. 31.
    Sparrow, E. M., & Moreno, A. A. Y. (1987). Effect of yaw on forced convection heat transfer from a circular cylinder. Heat and Mass Transfer, 30(3), 427–435.Google Scholar
  32. 32.
    Babich, A. Y., Mityakov, A. V., Zainullina, E. R., et al. (2017). Investigating heat transfer augmentation using gradient heat flux measurement and PIV method. In 33rd Siberian Thermophysical Seminar, STS 2017, Kutateladze Institute of Thermophysics SB RAS Novosibirsk, Russian Federation, 6–8 June 2017.Google Scholar
  33. 33.
    Seroshtanov, V. V., Sapozhnikov, S. Z., Pavlov, A. V., et al. (2017). Comprehensive study of flow and heat transfer at the surface of circular cooling fin. In International Conference on Problems of Thermal Physics and Power Engineering 2017, PTPPE 2017, National Research University Moscow Power Engineering Institute (NRU MPEI) Moscow, Russian Federation, 9–11 October 2017.Google Scholar
  34. 34.
    Seroshtanov, V. V., Sapozhnikov, S. Z., Mityakov, V. Y., et al. (2018). Investigation of flow and heat transfer at the surface of a single circular cooling fin. Engineering and Technology, 7(4), 33–36.Google Scholar
  35. 35.
    Seroshtanov, V. V., Gusakov, A. A., Mityakov, V. Y., et al. (2018). Investigation of flow and heat transfer at the circular fins. In International Scientific Conference on Energy, Environmental and Construction Engineering, EECE 2018, Congress Center of Peter the Great St. Petersburg Polytechnic University, 19–20 November 2018.Google Scholar
  36. 36.
    Pismennyy, E. N. (2004). Teploobmen i aerodinamika paketov poperechno-orebrennykh trub (Heat exchange and aerodynamics of packages of cross-finned tubes). Kiev: Alterpres.Google Scholar
  37. 37.
    Alekseev, V. V., Gachechiladze, I. A., Kiknadze, G. I., & Oleinikov, V. G. (1998). Smerchevoy energoobmen na trekhmernykh vognutykh rel’yefakh struktura samoorganizuyushchikhsya techeniy, ikh vizualizatsiya i mekhanizmy obtekaniya poverkhnostey (Tornado energy exchange on three-dimensional concave reliefs—The structure of self-organizing flows, their visualization and mechanisms of flow around surfaces). In The Second Russian National Conference on Heat Transfer, 1998 (Vol. 6, pp. 33–42).Google Scholar
  38. 38.
    Afanasyev, V. N., Veselkin, V. Yu., & Leontiev, A. I. (1991). Gidrodinamika i teploobmen pri obtekanii odinochnykh uglubleniy na iskhodno gladkoy poverkhnosti (Hydrodynamics and heat transfer during flow around single recesses on an initially smooth surface). Moscow: Moskovskiy Gosudarstvennyy tekhnicheskiy institut im. N. E. Baumana.Google Scholar
  39. 39.
    Isaev, S. A., Leontiev, A. I., Pyshny, I. A., et al. (2003). Intensifikatsiya smerchevogo turbulentnogo teploobmena v asimmetrichnykh lunkakh na ploskoy stenke (Intensification of tornado turbulent heat transfer in asymmetric holes on a flat wall). Inzhenerno-fizicheskiy, 76(2), 31–34.Google Scholar
  40. 40.
    Isaev, S. A., Leontiev, A. I., Mityakov, A. V., et al. (2002). Mestnyye koeffitsiyenty teplootdachi na poverkhnosti vytyanutoy lunki (Local heat transfer coefficients on the surface of an elongated hole). In 3th Russian National Conference on Heat Transfer. Intensification of Heat Transfer. Radiation and Complex Heat Transfer, Moscow Power Engineering Institute, Moscow, 2002 (Vol. 6, pp. 214–218).Google Scholar
  41. 41.
    Kiknadze, G. I., & Oleinikov, V. G. (1990). Samoorganizatsiya smercheobraznykh vikhrevykh struktur v potokakh gazov i zhidkostey i intensifikatsiya teplo- i massoobmena (Self-organization of tornado-like vortex structures in gas and liquid flows and intensification of heat and mass transfer). Novosibirsk: Institut teplofiziki Sibirskogo Otdeleniya akdemii nauk SSSR.Google Scholar
  42. 42.
    Gortyshev, Yu. F., Popov, I. A., Olimpiev, V. V., Schelchkov, A. V., et al. (2009). Teplogidravlicheskaya effektivnost’ perspektivnykh sposobov intensifikatsii teplootdachi v kanalakh teploobmennogo oborudovaniya (Thermohydraulic efficiency of promising methods of heat transfer intensification in the channels of heat exchange equipment). Kazan: Kazan National Research Technical University A. N. Tupolev.Google Scholar
  43. 43.
    Sokolov, N. P., Polishchuk, V. G., Andreev, K. D., et al. (2012). Teploobmen i gidravlika v kanalakh s oblunennymi poverkhnostyami (Heat transfer and hydraulics in channels with exposed surfaces). Saint-Petersburg: Izdatel’stvo Politekhnicheskogo universiteta.Google Scholar
  44. 44.
    Belenky, M. Ya., Lebedev, M. E., & Fokin, B. S. (1996). Konvektivnyy teploobmen pri obtekanii poverkhnosti so sfericheskimi lunkami (Convective heat transfer when flowing around a surface with spherical dimples: Textbook). Saint-Petersburg: Izdatel’stvo Politekhnicheskogo universiteta.Google Scholar
  45. 45.
    Baranov, P. A., Isaev, S. A., Leontiev, A. I., et al. (2002). Fizicheskoye i chislennoye modelirovaniye vikhrevogo teploobmena pri turbulentnom obtekanii sfericheskoy lunki na ploskosti (Physical and numerical simulation of vortex heat transfer during turbulent flow around a spherical hole on a plane). Teplofizika i aeromekhanika, 9(4), 521–532.Google Scholar
  46. 46.
    Ermishina, A. V., & Isaeva, S. A. (2001). Upravleniye obtekaniyem tel s vikhrevymi yacheykami v prilozhenii k letatelnym apparatam integralnoy komponovki (chislennoye i fizicheskoye modelirovaniye) (Control of the flow around bodies with vortex cells as applied to aircraft of the integrated layout (numerical and physical modeling)). Moscow: Saint-Petersburg.Google Scholar
  47. 47.
    Guzeev, A. S., Lebedev, A. O., Mityakov, A. V., et al. (2009). O zadymlyayemosti transportnykh sudov (On the smokiness of transport ships). In Optical flow research methods, Moscow, 2009, June 23–26.Google Scholar
  48. 48.
    Isaev, S. A., Mityakov, A. V. (2009). Chislennoye modelirovaniye konvektivnogo teploobmena v nizkoskorostnykh otryvnykh techeniyakh neodnorodnykh sred (Numerical modeling of convective heat transfer in low-speed separated flows of inhomogeneous media). In Shkola-Seminar, Zhukovsky, 2009.Google Scholar
  49. 49.
    Terekhov, V. I., Yarygin, N. I., & Dyachenko, A. Yu. (2002). Intensifikatsiya teplootdachi pri perestroyke techeniya v poperechnoy naklonnoy kaverne (The intensification of heat transfer during the restructuring of the flow in a transverse inclined cavity). In VI Siberian Thermophysical Seminar, Institute of Thermophysics Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2002.Google Scholar
  50. 50.
    Terekhov, V. I., Mshvidobadze, Yu. M., & Kalinina, S. V. Heat transfer coefficient and aerodynamic resistance on surface with single dimple. Enhancement Heat Transfer, 4(2), 131–145.Google Scholar
  51. 51.
    Akatnov, N. I., et al. (1982). Issledovaniye na udarnoy trube s soplom sverkhzvukovykh MGD kanalov na neravnovesnoy plazme inertnogo gaza (Research on a shock tube with a nozzle of supersonic MHD channels on a nonequilibrium inert gas plasma). Zhurnal tekhnicheskoy fiziki, 52(5), 884–892.Google Scholar
  52. 52.
    Maslennikov, V. G., & Sakharov, V. A. (1997). Dvukhdiafragmennaya udarnaya truba Fiziko-tekhnicheskogo instituta (Double-diaphragm shock tube of the Physicotechnical Institute). Zhurnal tekhnicheskoy fiziki, 67(11), 88–95.Google Scholar
  53. 53.
    Zhilin, Yu. V. (1976). Metodika izmereniya statsionarnykh teplovykh potokov s pomoshch’yu plenochnykh datchikov soprotivleniya (Method for measuring stationary heat fluxes using film resistance sensors). In Preprint No. 2-005, Joint Institute for High Temperatures (JIHT), RAS, Moscow, 1976.Google Scholar
  54. 54.
    Lykov, A. V. (1967). Teoriya teploprovodnosti (Theory of thermal conductivity). Moscow: Vysshaya shkola.Google Scholar
  55. 55.
    Babinsky, M. G., et al. (1976). Nekotoryye aerodinamicheskiye issledovaniya v giperzvukovoy udarnoy trube Leningradskogo politekhnicheskogo instituta imeni M.I. Kalinina (Some aerodynamic studies in a hypersonic shock tube of Leningrad Polytechnic Institute named after M.I. Kalinina). In Mechanics and Mechanical Engineering, Leningrad Polytechnic Institute named after M.I. Kalinina, Leningrad, 1976. Proceedings of the Leningrad Polytechnic Institute named after M.I. Kalinina (Vol. 352, pp. 100–104).Google Scholar
  56. 56.
    Sapozhnikov, S. Z., Mityakov, V. Yu., Mityakov, A. V., et al. (2004). Izmereniye teplovogo potoka na vnutrennikh stenkakh kanala udarnoy truby (Measurement of heat flux on the inner walls of the channel of the shock tube). Journal of Technical Physics, 30(2), 76–80.Google Scholar
  57. 57.
    Kim, S. J., & No, H. Ch. (2000). International Journal of Heat and Mass Transfer, 43, 4031.Google Scholar
  58. 58.
    Lee, K.-W., No, H. Ch., Chu, I.-Ch., et al. (2006). International Journal of Heat and Mass Transfer, 49, 1813.Google Scholar
  59. 59.
    Fan, G., Tong, P., Sun, Z., et al. (2018). Annals of Nuclear Energy, 113, 139.Google Scholar
  60. 60.
    Hu, H. W., Tang, G. H., & Niu, D. (2016). Applied Thermal Engineering, 100, 699.Google Scholar
  61. 61.
    Babich, A. Y., Zainullina, E. R., Sapozhnikov, S. Z., et al. (2017). Gradient heat flux measurement while researching of saturated water steam condensation. In International Conference on Problems of Thermal Physics and Power Engineering 2017, PTPPE 2017, National Research University Moscow Power Engineering Institute (NRU MPEI) Moscow, Russian Federation, 9–11 October 2017.Google Scholar
  62. 62.
    Rivkin, S. L., & Aleksandrov, A. A. (1980). Teplofizicheskiye svoystva vody i vodyanogo para (Thermophysical properties of water and water vapor). Moscow: Energiya.Google Scholar
  63. 63.
    Labuntsov, D. A. (1957). O vliyanii na teplootdachu pri plenochnoy kondensatsii zavisimosti fizicheskikh parametrov ot temperatury (On the effect on the heat transfer during film condensation of the dependence of physical parameters on temperature). Teploenergetika.Google Scholar
  64. 64.
    Babich, A. Y., Zainullina, E. R., Sapozhnikov, S. Z. et al. (2018). Gradient heat flux measurement in condensation study at inner and outer surfaces of the pipe. In 34th Siberian Thermophysical Seminar Dedicated to the 85th Anniversary of Academician A. K. Rebrov, STS 2018, Kutateladze Institute of Thermophysics of Siberian Branch of Russian Academy of Sciences Novosibirsk, Russian Federation, 27–30 August 2018.Google Scholar
  65. 65.
    Nusselt, W. (1916). Die Oberflachenkondensation des Wasserdampfes. Zeitchrift des VDI, 60(27), 541–546, 568–575.Google Scholar
  66. 66.
    Babich, A. Y., Zainullina, E. R., Sapozhnikov, S. Z., et al. (2019). The study of heat flux measurement for heat transfer during condensation at pipe surfaces. Technical Physics Letters, 45(4), 321–323.Google Scholar
  67. 67.
    Gross, U., Storch, Th., Philipp, Ch., et al. (2009). Wave frequency of falling liquid films and the effect on reflux condensation in vertical tubes. Multiphase Flow, 35, 398–409.Google Scholar
  68. 68.
    Salazar, R. P., & Marschall, E. (1978). Statistical properties of the thickness of a falling liquid film. Acta Mechanica, 29, 239–255.Google Scholar
  69. 69.
    Nikoglou, A. A., Hinis, E. P., & Simopoulos, S. E. (2015). Statistical characteristics of free falling water film. In NURETH-16, Chicago, IL, August 30–September 4, 2015.Google Scholar
  70. 70.
    Labuntsov, D. A., & Gomelauri, A. V. (1976). Tr. MEI, 310, 50.Google Scholar
  71. 71.
    Nukiyama, S. (1984). Heat and Mass Transfer, 27(7), 956–970.Google Scholar
  72. 72.
    Petukhov, B. S. (1952). Opytnoye izucheniye protsessov teploperedachi: uchebnoye posobiye (Experimental study of heat transfer processes: A training manual). Leningrad: Gosenergoizdat.Google Scholar
  73. 73.
    Yagov, V. V., Zabirov, A. R., Kanin, P. K., et al. (2017). Inzh.-Fiz. Zh., 90, 287.Google Scholar
  74. 74.
    Subbotina, V. V., Sapozhnikov, S. Z., Mityakov, V. Y., et al. (2019). An experimental investigation of the film boiling of subcooled water by gradient heat flux measurement. Technical Physics Letters, 45(3), 253–255.CrossRefGoogle Scholar
  75. 75.
    Kruse, P. W., McGlauchlin, L. D., McQuistan, R. B., et al (1962). Elements of infrared technology. N.Y.Google Scholar
  76. 76.
    Sapozhnikov, S. Z., Mityakov, V. Yu., & Mityakov, A. V. (2003). Gradiyentnyye datchiki teplovogo potoka (Gradient heat flux sensors). Saint-Petersburg: Izdatel’stvo SPbGPU.Google Scholar
  77. 77.
    Carslow, G., & Jaeger, D. (1964). Teploprovodnost tverdykh tel (Thermal conductivity of solids). Moscow: Nauka.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sergey Z. Sapozhnikov
    • 1
    Email author
  • Vladimir Yu. Mityakov
    • 2
  • Andrey V. Mityakov
    • 2
  1. 1.Science Education Centre “Energy Thermophysics” Institute of EnergyPeter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  2. 2.Saint-PetersburgRussia

Personalised recommendations