Advertisement

Heatmetry pp 59-86 | Cite as

Multifunctional Performance of Gradient Heat Flux Sensors

  • Sergey Z. SapozhnikovEmail author
  • Vladimir Yu. Mityakov
  • Andrey V. Mityakov
Chapter
  • 27 Downloads
Part of the Heat and Mass Transfer book series (HMT)

Abstract

Electrical resistance of all gradient heat flux sensors (GHFSs) is temperature-dependent, which makes it possible to regard them as resistance temperature detectors.

References

  1. 1.
    Mityakov, V. Y. (2005). Vozmozhnosti gradiyentnykh datchikov teplovogo potoka na osnove vismuta v teplotekhnicheskom eksperimente (Possibilities of gradient bismuth-based heat flux sensors in a thermotechnical experiment). Dissertation, Saint-Petersburg State Polytechnical University.Google Scholar
  2. 2.
    Tauts, Y. A. (1962). Foto- i termoelektricheskiye yavleniya v poluprovodnikakh (Photo- and thermoelectric phenomena in semiconductors) (M. P. Mikhaylovoy, trans., T. B. Kolomiytsa, ed.). Moscow: Izdatel’stvovo inostrannoy literatury.Google Scholar
  3. 3.
    Sergeyev, O. A. (1972). Metrologicheskiye osnovy teplofizicheskikh izmereniy (Metrological foundations of thermophysical measurements). Moscow: Izdatel’stvo standartov.Google Scholar
  4. 4.
    Yaryshev, N. A. (1967). Teoreticheskiye osnovy izmereniya nestatsionarnykh temperature (Theoretical foundations of measuring non-stationary temperatures). Leningrad: Energiya.Google Scholar
  5. 5.
    Gerashenko, O. A. (1971). Osnovy teplometrii (Basics of heat metering). Kiev: Nauka dumka.Google Scholar
  6. 6.
    Lykov, A. V., & Smolsky, B. M. (1966). Issledovaniye nestatsionarnogo teplo- i massoobmena (The study of unsteady heat and mass transfer). Nauka i tekhnika, 252.Google Scholar
  7. 7.
    Carslow, G., & Jaeger, D. (1964). Teploprovodnost’ tverdykh tel (Thermal conductivity of solids). Moscow: Nauka.Google Scholar
  8. 8.
    Mitiakov, V. Y., Sapoznikov, S. Z., & Mitiakov, A. V. (2000). Transient phenomena in gradient heat flux sensor. In 3rd European Thermal Sciences Conference, Heidelberg, Germany (Vol. 2, pp. 687–690).Google Scholar
  9. 9.
    Mitiakov, V. Y., Sapozhnikov, S. Z., Chumakov, Y. S., & Mitiakov, A. V. (2001). Experimental investigation of the convective heat transfer using gradient heat flux sensors. In 5th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Thessaloniki, Greece (pp. 111–116).Google Scholar
  10. 10.
    Kartashov, E. M. (1979). Analiticheskiye metody v teploprovodnosti tverdykh tel (Analytical methods in the thermal conductivity of solids. A Textbook for universities). Moscow: Vysshaya shkola.Google Scholar
  11. 11.
    Mityakov, V. Yu., Mityakov, A. V., & Sapozhnikov, S. Z. (2002). Opredeleniye radiatsionnykh i teplofizicheskikh kharakteristik materialov metodami gradiyentnoy teplometrii (Determination of radiation and thermophysical characteristics of materials by gradient heatmetry methods). In The Siberian Thermophysical Seminar, Institute of Thermophysics Siberian Branch of the Russian Academy of Sciences, Novosibirsk.Google Scholar
  12. 12.
    Kornilov, V. I., & Litvinenko, Yu. A. (2001). Sravnitel’nyy analiz metodov izmereniy poverkhnostnogo treniya v neszhimayemom gradiyentnom turbulentnom pogranichnom sloye (A comparative analysis of methods for measuring surface friction in an incompressible gradient turbulent boundary layer). Preprint of the Institute of Theoretical and Applied Mechanics Siberian Branch of the Russian Academy of Sciences, 1, 44.Google Scholar
  13. 13.
    Sapozhnikov, S. Z., Mityakov, V. Yu., & Mityakov, A. V. (2003). Gradiyentnyye datchiki teplovogo potoka (Gradient heat flux sensors). Saint-Petersburg: Izdatel’stvo SPbGPU.Google Scholar
  14. 14.
    Sapozhnikov, S. Z., Mitiakov, V. Y., & Mitiakov, A. V. (2003). Capabilities of gradient sensors in the measurement of the heat fluxes, temperatures, tangential stresses, and thermophysical characteristics of materials. Journal of Engineering Thermophysics, 12(1), 49–71.Google Scholar
  15. 15.
    Preobrazhensky, V. P. (1978). Teplotekhnicheskiye izmereniya i pribory (Hermotechnical measurements and devices. Textbook for universities). Moscow: Energiya.Google Scholar
  16. 16.
    Kutateladze, S. S. (1990). Teploperedacha i gidrodinamicheskoye soprotivleniye: Spravochnoye posobiye (Heat transfer and hydrodynamic resistance. A reference guide). Moscow: Energoatomizdat.Google Scholar
  17. 17.
    Il’inskiy, M. (1970). Beskontaktnoye izmereniye raskhodov (Noncontacting rate measurement). Energiya, 112.Google Scholar
  18. 18.
    Korotkov, P. A., Belyaev, D. V., & Azimov, R. K. (1969). Teplovyye raskhodomery (Thermal flow meters) (p. 176). Leningrad: Mechanical Engineering.Google Scholar
  19. 19.
    Kakhanovich, V. S. (1970). Izmereniye raskhoda veshchestva i tepla pri peremennykh parametrakh (Measurement of the flow of matter and heat with variable parameters). Moscow: Energiya.Google Scholar
  20. 20.
    Kremlevskiy, P. P., & Shornikova, Ye. A. (Eds.). (2004). Raskhodomery i schetchiki kolichestva: Spravochnik (Flowmeters and counters of quantity). Saint-Petersburg: Politekhnika.Google Scholar
  21. 21.
    Levin, V. M. (1972). Raskhodomery malykh raskhodov dlya skhem promyshlennoy avtomatik (Low flow meters for industrial automation circuits). Moscow: Energiya.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sergey Z. Sapozhnikov
    • 1
    Email author
  • Vladimir Yu. Mityakov
    • 2
  • Andrey V. Mityakov
    • 2
  1. 1.Science Education Centre “Energy Thermophysics” Institute of EnergyPeter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  2. 2.Saint-PetersburgRussia

Personalised recommendations