Advertisement

Heatmetry pp 39-58 | Cite as

Transient Heat Flux Measurements

  • Sergey Z. SapozhnikovEmail author
  • Vladimir Yu. Mityakov
  • Andrey V. Mityakov
Chapter
  • 26 Downloads
Part of the Heat and Mass Transfer book series (HMT)

Abstract

Heatmetry in transient processes is of primary interest because heat flux is subjected to fluctuations caused by turbulent convective heat transfer, environmental temperature instability, and other factors even in processes assumed to be steady-state [1–3]. Therefore, we can assess how accurately experimental data reflect the actual heat flux variation by taking into account thermal inertia of the HFS.

References

  1. 1.
    Koshkin, V. K., Kalinin, E. K., Dreytser, G. A., et al. (1973). Nestatsionarnyy teploobmen (Unsteady heat transfer). Moscow: Mashinostroyeniye.Google Scholar
  2. 2.
    Loytsyanskiy, L. G. (1987). Mekhanika zhidkosti i gaza (Mechanics of fluid and gas). Moscow: Nauka.Google Scholar
  3. 3.
    Shlikhting, G. (1969). Teoriya pogranichnogo sloya (Theory of the boundary layer). Moscow: Nauka.Google Scholar
  4. 4.
    Anatychuk, L. I., & Bulat, L. P. (2001). Poluprovodniki v ekstremal’nykh temperaturnykh usloviyakh (Semiconductors in extreme temperature conditions). Saint-Petersburg: Nauka.Google Scholar
  5. 5.
    Gerashchenko, O. A. (1971). Osnovy teplometrii (The basics of heat metering). Kiyev: Naukova dumka.Google Scholar
  6. 6.
    Grabov, V. M., Divin, N. P., & Komarov, V. A. (2002). Bystrodeystviye anizotropnogo elementa (The performance of an anisotropic element). In Termoelektriki i ikh primeneniye (Thermoelectrics and their application) (pp. 85–88). Saint-Petersburg: Institute of Physics and Technology named after A. F. Ioffe Russian Academy of Sciences.Google Scholar
  7. 7.
    Mitiakov, V., Sapoznikov, S., & Mitiakov, A. (2000). Transient phenomena in gradient heat flux sensor. Paper presented at the 3rd European Thermal Sciences Conference, Heidelberg, Germany.Google Scholar
  8. 8.
    Laser Technologies Center—Laser equipment, technology, material, technical support, service. http://www.ltc.ru/about/history-en.shtml.
  9. 9.
    Mityakov, A. V. (2000). Gradiyentnyye datchiki teplovogo potoka v nestatsionarnoy teplometrii (Gradient heat flux sensors in non-stationary heat flux measurement: dis.). Dissertation, Saint-Petersburg State Technical University.Google Scholar
  10. 10.
    Zakhner, T., Forg, R., & Lengfelner, G. (1998). Transverse thermoelectric response of a tilted metallic multilayer structure. Applied Physics Letters, 73(10), 1364–1366.CrossRefGoogle Scholar
  11. 11.
    Zeuner, S., Lengfellner, H., & Prettl, W. (1995). Thermal boundary resistance and diffusivity for YBA\({}_{2}\)Cu\({}_{3}\)O\({}_{7}\). Physical Review B, 51(17), 11903–11908.Google Scholar
  12. 12.
    Sapozhnikov, S. Z., Terekhov, V. I., & Mityakov, V. Y., et al. (2008). Testing and using of gradient heat flux sensors. Paper presented at the Heat Transfer Research.Google Scholar
  13. 13.
    Anatachuk, L. I. (1979). Termoelementy i termoelektricheskiye ustroystva: Spravochnik (Thermoelements and thermoelectric devices: Reference book). Kiev: Nauka dumka.Google Scholar
  14. 14.
    Grigoryev, B. A. (1974). Impul’snyy nagrev izlucheniyami. Nestatsionarnyye temperaturnyye polya pri impul’snom luchistom nagreve chast 2 (Pulse heating by radiation. Non-stationary temperature fields during pulsed radiant heating, part 2). Moscow: Nauka.Google Scholar
  15. 15.
    Grigoryev, B. A. (1974). Impul’snyy nagrev izlucheniyami: Kharakteristiki impulsnogo oblucheniya i luchistogo nagreva chast 1 (Pulse heating by radiation: Characteristics of pulsed irradiation and radiant heating, part 1). Moscow: Nauka.Google Scholar
  16. 16.
    Pekhovich, A. I., & Zhidkikh, V. M. (1976). Raschety teplovogo rezhima tverdykh tel (Calculation of the thermal regime of solids). Leningrad: Energiya.Google Scholar
  17. 17.
    Solodov, F. F., & Tsvetkov, A. P. (1986). Praktikum po teploperedache (Workshop on heat transfer: Textbook for universities). Moscow: Energoatomizdat.Google Scholar
  18. 18.
    Karslou, G., & Yeger, D. (1964). Teploprovodnost’ tverdykh tel (Thermal conductivity of solids). Moscow: Nauka.Google Scholar
  19. 19.
    Kartashov, E. M. (1979). Analiticheskiye metody v teploprovodnosti tverdykh tel (Analytical methods in the thermal conductivity of solids: Textbook for universities). Moscow: Vysshaya shkola.Google Scholar
  20. 20.
    Belyayev, N. M., & Ryadno, A. A. (1978). Metody nestatsionarnoy teploprovodnosti (Methods of unsteady heat conduction: Textbook for universities). Moscow: Vysshaya Shkola.Google Scholar
  21. 21.
    Blatt, F. Dzh., Shreder, P. A., & Belashchenko, D. K. (Eds.). (1980). Termoelektrodvizhushchaya sila metallov (Thermoelectromotive force of metals). Moscow: Metallurgiya.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sergey Z. Sapozhnikov
    • 1
    Email author
  • Vladimir Yu. Mityakov
    • 2
  • Andrey V. Mityakov
    • 2
  1. 1.Science Education Centre “Energy Thermophysics” Institute of EnergyPeter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  2. 2.Saint-PetersburgRussia

Personalised recommendations