Advertisement

Powering of the Implanted Monitoring System

  • Kerim Türe
  • Catherine Dehollain
  • Franco Maloberti
Chapter
  • 46 Downloads
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

This chapter introduces the fundamentals of wireless power transfer used for implant powering. An overview of several possible methods for the power source is exhibited, and the hybrid choice of remote powering and a rechargeable battery is justified. The choice of magnetic coupling as a power transfer method is explained. Moreover, the 4-coil inductive link and the required integrated circuits to create a stable power supply for remote powering are presented. In addition to the power receiving circuits, supplementary blocks are introduced to increase the power transfer efficiency.

Keywords

Automatic resonance tuning Clock generator Comparator Composite diode Half-wave rectifier Inductive coupling Inductive link Low drop-out (LDO) Magnetic coupling Pass transistor Power feedback Power transfer efficiency (PTE) Rectifier Regulator Remote powering Resonance Supply voltage Wireless power transfer (WPT) 2-Coil 4-Coil 

References

  1. 1.
    IEEE (2006) IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz. IEEE Std C951-2005 (revision of IEEE Std C951-1991). IEEE, New York, pp 1–238Google Scholar
  2. 2.
    Yilmaz G (2014) Wireless power transfer and data communication for intracranial neural implants case study. École Polytechnique Fédérale de Lausanne (EPFL), LausanneGoogle Scholar
  3. 3.
    Antonioli G, Baggioni F, Consiglio F et al (1973) Stinulatore cardiaco impiantabile con nuova battaria a stato solido al litio. Minerva Med 64:2298–2305Google Scholar
  4. 4.
    Mond HG, Proclemer A (2011) The 11th World survey of cardiac pacing and implantable Cardioverter-Defibrillators: calendar year 2009–a world society of arrhythmia’s project. Pacing Clin Electrophysiol 34:1013–1027CrossRefGoogle Scholar
  5. 5.
    Roundy S, Wright PK, Rabaey JM (2004) Energy scavenging for wireless sensor networks: with special focus on vibrations. Springer, BerlinCrossRefGoogle Scholar
  6. 6.
    Kwon D, Rincon-Mora GA (2010) A 2-µm BiCMOS rectifier-free AC–DC piezoelectric energy harvester-charger IC. IEEE Trans Biomed Circuits Syst 4:400–409CrossRefGoogle Scholar
  7. 7.
    Zhang Y, Zhang F, Shakhsheer Y et al (2013) A batteryless 19 µW MICS/ISM-band energy harvesting body sensor node SoC for ExG applications. IEEE J. Solid State Circuits 48:199–213CrossRefGoogle Scholar
  8. 8.
    Ayazian S, Hassibi A (2011) Delivering optical power to subcutaneous implanted devices. In: 2011 Annual international conference of the IEEE engineering in medicine and biology society, pp 2874–2877Google Scholar
  9. 9.
    Goto K, Nakagawa T, Nakamura O, Kawata S (2001) An implantable power supply with an optically rechargeable lithium battery. IEEE Trans Biomed Eng 48:830–833CrossRefGoogle Scholar
  10. 10.
    Chow EY, Yang C, Ouyang Y et al (2011) Wireless powering and the study of RF propagation through ocular tissue for development of implantable sensors. IEEE Trans Antennas Propag 59:2379–2387CrossRefGoogle Scholar
  11. 11.
    Ho JS, Kim S, Poon ASY (2013) Midfield wireless powering for implantable systems. Proc IEEE 101:1369–1378CrossRefGoogle Scholar
  12. 12.
    Yilmaz G, Atasoy O, Dehollain C (2013) Wireless energy and data transfer for in-vivo epileptic focus localization. IEEE Sensors J 13:4172–4179CrossRefGoogle Scholar
  13. 13.
    Sauer C, Stanacevic M, Cauwenberghs G, Thakor N (2005) Power harvesting and telemetry in CMOS for implanted devices. IEEE Trans Circuits Syst Regul Pap 52:2605–2613CrossRefGoogle Scholar
  14. 14.
    Catrysse M, Hermans B, Puers R (2004) An inductive power system with integrated bi-directional data-transmission. Sens Actuators, A 115:221–229CrossRefGoogle Scholar
  15. 15.
    Mazzilli F, Thoppay PE, Praplan V, Dehollain C (2012) Ultrasound energy harvesting system for deep implanted-medical-devices (IMDs). In: 2012 IEEE international symposium on circuits and systems, pp 2865–2868Google Scholar
  16. 16.
    Mathieson K, Loudin J, Goetz G, et al (2012) Photovoltaic retinal prosthesis with high pixel density. Nat Photonics 6:391–397CrossRefGoogle Scholar
  17. 17.
    Lee SB, Lee B, Kiani M et al (2016) An inductively-powered wireless neural recording system with a charge sampling analog front-end. IEEE Sensors J 16:475–484CrossRefGoogle Scholar
  18. 18.
    US Food and Drug Administration (1997) Information for manufacturers seeking marketing clearance of diagnostic ultrasound systems and transducers. Center for Devices and Radiological Health, US Food and Drug Administration, RockvilleGoogle Scholar
  19. 19.
    Baker MW, Sarpeshkar R (2007) Feedback analysis and design of RF power links for low-power bionic systems. IEEE Trans Biomed Circuits Syst 1:28–38CrossRefGoogle Scholar
  20. 20.
    Kurs A, Karalis A, Moffatt R et al (2007) Wireless power transfer via strongly coupled magnetic resonances. Science 317:83–86MathSciNetCrossRefGoogle Scholar
  21. 21.
    RamRakhyani AK, Mirabbasi S, Chiao M (2011) Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants. IEEE Trans Biomed Circuits Syst 5:48–63CrossRefGoogle Scholar
  22. 22.
    Kiani M, Jow U, Ghovanloo M (2011) Design and optimization of a 3-coil inductive link for efficient wireless power transmission. IEEE Trans Biomed Circuits Syst 5:579–591CrossRefGoogle Scholar
  23. 23.
    Vaillancourt P, Djemouai A, Harvey JF, Sawan M (1997) EM radiation behavior upon biological tissues in a radio-frequency power transfer link for a cortical visual implant. In: Proceedings of the 19th annual international conference of the IEEE engineering in medicine and biology society. “Magnificent milestones and emerging opportunities in medical engineering” (Cat. No.97CH36136), vol 6, pp 2499–2502Google Scholar
  24. 24.
    Silay KM (2012) Remotely powered wireless cortical implants for brain-machine interfaces. École Polytechnique Fédérale de Lausanne (EPFL), LausanneGoogle Scholar
  25. 25.
    Levacq D, Liber C, Dessard V, Flandre D (2004) Composite ULP diode fabrication, modelling and applications in multi-Vth FD SOI CMOS technology. Solid State Electron 48:1017–1025CrossRefGoogle Scholar
  26. 26.
    Chen C-L, Chen K-H, Liu S-I (2007) Efficiency-enhanced CMOS rectifier for wireless telemetry. Electron Lett 43:976–978CrossRefGoogle Scholar
  27. 27.
    Lee H, Ghovanloo M (2011) An integrated power-efficient active rectifier with offset-controlled high speed comparators for inductively powered applications. IEEE Trans Circuits Syst Regul Pap 58:1749–1760MathSciNetCrossRefGoogle Scholar
  28. 28.
    Hashemi SS, Sawan M, Savaria Y (2012) A high-efficiency low-voltage CMOS rectifier for harvesting energy in implantable devices. IEEE Trans Biomed Circuits Syst 6:326–335CrossRefGoogle Scholar
  29. 29.
    Lu Y, Ki W (2014) A 13.56 MHz CMOS active rectifier with switched-offset and compensated biasing for biomedical wireless power transfer systems. IEEE Trans Biomed Circuits Syst 8:334–344CrossRefGoogle Scholar
  30. 30.
    Cha H, Park W, Je M (2012) A CMOS rectifier with a cross-coupled latched comparator for wireless power transfer in biomedical applications. IEEE Trans Circuits Syst Express Briefs 59:409–413CrossRefGoogle Scholar
  31. 31.
    Khan SR, Choi G (2017) High-efficiency CMOS rectifier with minimized leakage and threshold cancellation features for low power bio-implants. Microelectron J 66:67–75CrossRefGoogle Scholar
  32. 32.
    Steyaert MSJ, Sansen WMC (1990) Power supply rejection ratio in operational transconductance amplifiers. IEEE Trans Circuits Syst 37:1077–1084CrossRefGoogle Scholar
  33. 33.
    Gosselin P, Puddu R, Carreira A et al (2017) A CMOS automatic tuning system to maximize remote powering efficiency. In: 2017 IEEE international symposium on circuits and systems (ISCAS), pp 1–4Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Kerim Türe
    • 1
  • Catherine Dehollain
    • 1
  • Franco Maloberti
    • 2
  1. 1.École Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.University of PaviaPaviaItaly

Personalised recommendations