Advertisement

Implantable Monitoring System for Epilepsy

  • Kerim Türe
  • Catherine Dehollain
  • Franco Maloberti
Chapter
  • 49 Downloads
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

This chapter provides detailed information about the implantable intracranial monitoring system introduced in the previous chapter. The system overview and block diagram of the system will be presented. This chapter covers each functional block starting from the properties of the interested brain signals for presurgical analysis of epilepsy treatment to the receiver unit in the external base station. The detailed implementation of the blocks in the scope of this book is left for the following chapters.

Keywords

Analog-to-digital converter (ADC) Capacitive-coupled low-noise amplifier (CC-LNA) Compression Controller Digital signal processing (DSP) Energy storage Epilepsy External energy source High-frequency oscillation (HFO) Implantable monitoring system Low-noise amplifier (LNA) Low power transceiver Memory Micro-electrode array (MEA) Noise efficiency factor (NEF) Power efficiency metric (PEF) Power management Power supply generation Signal-to-noise ratio (SNR) Successive approximation register (SAR) 

References

  1. 1.
    Wu JY, Sankar R, Lerner JT et al (2010) Removing interictal fast ripples on electrocorticography linked with seizure freedom in children. Neurology 75:1686CrossRefGoogle Scholar
  2. 2.
    Zijlmans M, Jiruska P, Zelmann R et al (2012) High-frequency oscillations as a new biomarker in epilepsy. Ann Neurol 71:169–178CrossRefGoogle Scholar
  3. 3.
    Kim S, Bhandari R, Klein M et al (2009) Integrated wireless neural interface based on the Utah electrode array. Biomed Microdevices 11:453–466CrossRefGoogle Scholar
  4. 4.
    Viventi J, Kim D-H, Vigeland L et al (2011) Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat Neurosci 14:1599–1605CrossRefGoogle Scholar
  5. 5.
    Yeager JD, Phillips DJ, Rector DM, Bahr DF (2008) Characterization of flexible ECoG electrode arrays for chronic recording in awake rats. J Neurosci Methods 173:279–285CrossRefGoogle Scholar
  6. 6.
    Polikov VS, Tresco PA, Reichert WM (2005) Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods 148:1–18CrossRefGoogle Scholar
  7. 7.
    Mehrali M, Bagherifard S, Akbari M et al (2018) Blending electronics with the human body: a pathway toward a cybernetic future. Adv Sci (Weinh) 5(10)Google Scholar
  8. 8.
    Wattanapanitch W, Fee M, Sarpeshkar R (2007) An energy-efficient micropower neural recording amplifier. IEEE Trans Biomed Circuits Syst 1:136–147CrossRefGoogle Scholar
  9. 9.
    Yang Z, Zhao Q, Keefer E, Liu W (2009) Noise characterization, modeling, and reduction for in vivo neural recording. In: Bengio Y, Schuurmans D, Lafferty JD et al (eds) Advances in neural information processing systems, vol 22. Curran Associates Inc., New York, pp 2160–2168Google Scholar
  10. 10.
    Steyaert MSJ, Sansen WMC (1987) A micropower low-noise monolithic instrumentation amplifier for medical purposes. IEEE J Solid-State Circuits 22:1163–1168CrossRefGoogle Scholar
  11. 11.
    Muller R, Gambini S, Rabaey J (2012) A 0.013 mm2, 5 μW, DC-coupled neural signal acquisition IC with 0.5 V supply. IEEE J Solid-State Circuits 47(1):232–243CrossRefGoogle Scholar
  12. 12.
    Ruiz-Amaya J, Rodríguez-Pérez A, Delgado-Restituto M (2010) A comparative study of low-noise amplifiers for neural applications. In: 2010 International conference on microelectronics, pp 327–330Google Scholar
  13. 13.
    Nyquist H (1928) Certain topics in telegraph transmission theory. Trans Am Inst Electr Eng 47:617–644CrossRefGoogle Scholar
  14. 14.
    Gao H, Walker RM, Nuyujukian P et al (2012) HermesE: A 96-channel full data rate direct neural interface in 0.13 µm CMOS. IEEE J Solid-State Circuits 47:1043–1055CrossRefGoogle Scholar
  15. 15.
    Mollazadeh M, Murari K, Cauwenberghs G, Thakor N (2009) Micropower CMOS integrated low-noise amplification, filtering, and digitization of multimodal neuropotentials. IEEE Trans Biomed Circuits Syst 3:1–10CrossRefGoogle Scholar
  16. 16.
    Harrison RR, Watkins PT, Kier RJ et al (2007) A low-power integrated circuit for a wireless 100-electrode neural recording system. IEEE J Solid-State Circuits 42:123–133CrossRefGoogle Scholar
  17. 17.
    Chen F, Chandrakasan AP, Stojanovic VM (2012) Design and analysis of a hardware-efficient compressed sensing architecture for data compression in wireless sensors. IEEE J Solid-State Circuits 47:744–756CrossRefGoogle Scholar
  18. 18.
    Shoaran M, Kamal MH, Pollo C et al (2014) Compact low-power cortical recording architecture for compressive multichannel data acquisition. IEEE Trans Biomed Circuits Syst 8:857–870CrossRefGoogle Scholar
  19. 19.
    Wang A, Lin F, Jin Z, Xu W (2016) Ultra-Low Power Dynamic Knob in Adaptive Compressed Sensing Towards Biosignal Dynamics. IEEE Transactions on Biomedical Circuits and Systems 10:579–592CrossRefGoogle Scholar
  20. 20.
    Ranjandish R, Schmid A (2018) A sub-µ/channel, 16-channel seizure detection and signal acquisition SoC based on multichannel compressive sensing. IEEE Trans Circuits Syst II: Express Briefs 65:1400–1404CrossRefGoogle Scholar
  21. 21.
    Aprile C, Ture K, Baldassarre L et al (2018) Adaptive learning-based compressive sampling for low-power wireless implants. IEEE Trans Circuits Syst I: Reg Pap 65:3929–3941CrossRefGoogle Scholar
  22. 22.
    Kwon D, Rincon-Mora GA (2010) A 2-µm BiCMOS rectifier-free AC–DC piezoelectric energy harvester-charger IC. IEEE Trans Biomed Circuits Syst 4:400–409CrossRefGoogle Scholar
  23. 23.
    Zhang Y, Zhang F, Shakhsheer Y et al (2013) A batteryless 19µW MICS/ISM-Band energy harvesting body sensor node SoC for ExG applications. IEEE J Solid-State Circuits 48:199–213CrossRefGoogle Scholar
  24. 24.
    Ayazian S, Hassibi A (2011) Delivering optical power to subcutaneous implanted devices. In: 2011 Annual international conference of the IEEE engineering in medicine and biology society, pp 2874–2877Google Scholar
  25. 25.
    Goto K, Nakagawa T, Nakamura O, Kawata S (2001) An implantable power supply with an optically rechargeable lithium battery. IEEE Trans Biomed Eng 48:830–833CrossRefGoogle Scholar
  26. 26.
    Mercier PP, Lysaght AC, Bandyopadhyay S et al (2012) Energy extraction from the biologic battery in the inner ear. Nat Biotechnol 30:1240–1243CrossRefGoogle Scholar
  27. 27.
    Miranda H, Gilja V, Chestek CA et al (2010) HermesD: a high-rate long-range wireless transmission system for simultaneous multichannel neural recording applications. IEEE Trans Biomed Circuits Syst 4:181–191CrossRefGoogle Scholar
  28. 28.
    Nikitin PV, Rao KVS, Lazar S (2007) An overview of near field UHF RFID. In: 2007 IEEE international conference on RFID, pp 167–174Google Scholar
  29. 29.
    Chow EY, Yang C, Ouyang Y et al (2011) Wireless powering and the study of RF propagation through ocular tissue for development of implantable sensors. IEEE Trans Antennas Propag 59:2379–2387CrossRefGoogle Scholar
  30. 30.
    Ho JS, Kim S, Poon ASY (2013) Midfield wireless powering for implantable systems. Proc IEEE 101:1369–1378CrossRefGoogle Scholar
  31. 31.
    Yilmaz G, Atasoy O, Dehollain C (2013) Wireless energy and data transfer for in-vivo epileptic focus localization. IEEE Sensors J 13:4172–4179CrossRefGoogle Scholar
  32. 32.
    Sauer C, Stanacevic M, Cauwenberghs G, Thakor N (2005) Power harvesting and telemetry in CMOS for implanted devices. IEEE Trans Circuits Syst I: Reg Pap 52:2605–2613CrossRefGoogle Scholar
  33. 33.
    Catrysse M, Hermans B, Puers R (2004) An inductive power system with integrated bi-directional data-transmission. Sens Actuators A: Phys 115:221–229CrossRefGoogle Scholar
  34. 34.
    Mazzilli F, Thoppay PE, Praplan V, Dehollain C (2012) Ultrasound energy harvesting system for deep implanted-medical-devices (IMDs). In: 2012 IEEE international symposium on circuits and systems, pp 2865–2868Google Scholar
  35. 35.
    Mathieson K, Loudin J, Goetz G et al (2012) Photovoltaic retinal prosthesis with high pixel density. Nat Photonics 6:391–397CrossRefGoogle Scholar
  36. 36.
    Kilinc EG, Dehollain C, Maloberti F (2015) Remote powering and data communication for implanted biomedical systems, 1st edn (2016 edition). Springer, New YorkGoogle Scholar
  37. 37.
    Lee S, Lee B, Kiani M et al. (2016) An inductively-powered wireless neural recording system with a charge sampling analog front-end. IEEE Sensors J 16:475–484CrossRefGoogle Scholar
  38. 38.
    Mandal S, Sarpeshkar R (2008) Power-efficient impedance-modulation wireless data links for biomedical implants. IEEE Trans Biomed Circuits Syst 2:301–315CrossRefGoogle Scholar
  39. 39.
    Rao KVS, Nikitin PV, Rao KVS, Nikitin PV (2006) Theory and measurement of backscattering from RFID tags. IEEE Antennas and Propag Mag 48:212–218CrossRefGoogle Scholar
  40. 40.
    Pandey J, Otis BP (2011) A Sub-100µW MICS/ISM band transmitter based on injection-locking and frequency multiplication. IEEE J Solid-State Circuits 46:1049–1058CrossRefGoogle Scholar
  41. 41.
    Medical Device Radiocommunications Service (MedRadio) (2011). In: Federal Communications Commission. https://www.fcc.gov/wireless/bureau-divisions/broadband-division/medical-device-radiocommunications-service-medradio. Accessed 12 Nov 2018
  42. 42.
    First report and order regarding ultra-wideband transmission systems (2002). Federal Communications CommissionGoogle Scholar
  43. 43.
    Vaillancourt P, Djemouai A, Harvey J, Sawan M (1997) EM radiation behavior upon biological tissues in a radio-frequency power transfer link for a cortical visual implant. In: Proceedings of the 19th annual international conference of the IEEE engineering in medicine and biology society ‘magnificent milestones and emerging opportunities in medical engineering’ (Cat No97CH36136)Google Scholar
  44. 44.
    Silay KM, Dehollain C, Declercq M (2008) Numerical analysis of temperature elevation in the head due to power dissipation in a cortical implant. In: 2008 30th annual international conference of the IEEE engineering in medicine and biology society, pp 951–956Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Kerim Türe
    • 1
  • Catherine Dehollain
    • 1
  • Franco Maloberti
    • 2
  1. 1.École Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.University of PaviaPaviaItaly

Personalised recommendations