Advertisement

Fuzzy Primeness in Quantales

  • Flaulles Boone BergamaschiEmail author
  • Regivan H. N. Santiago
Chapter
  • 10 Downloads
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 276)

Abstract

This paper is an investigation about primeness in quantales environment. It is proposed a new definition for prime ideal in noncommutative setting. As a consequence, fuzzy primeness can be defined in similar way to ring theory.

Notes

Acknowledgements

The authors would like to thank UESB (Southwest Bahia State University) and UFRN (Federal University of Rio Grande do Norte) for their financial support. This research was partially supported by the Brazilian Research Council (CNPq) under the process 306876/2012-4.

References

  1. 1.
    Yang, L., Luoshan, X.: Roughness in quantales. Inf. Sci. 220, 568–579 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Luo, Q., Wang, G.: Roughness and fuzziness in quantales. Inf. Sci. 271, 14–30 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Navarro, G., Cortadellas, O., Lobillo, F.J.: Prime fuzzy ideals over noncommutative rings. Fuzzy Sets Syst. 199(0):108–120 (2012)Google Scholar
  4. 4.
    Handelman, D., Lawrence, J.: Strongly prime rings. Trans. Am. Math. Soc. 211, 209–223 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bergamaschi, F.B., Santiago, R.H.N.: Strongly prime fuzzy ideals over noncommutative rings. In: 2013 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 1–5 (2013)Google Scholar
  6. 6.
    Bergamaschi, F.B., Santiago, R.H.N.: A fuzzy version of uniformly strongly prime ideals. In: 2014 IEEE Conference on Norbert Wiener in the 21st Century (21CW), pp. 1–6. IEEE (2014)Google Scholar
  7. 7.
    Rosenthal, K.I.: Quantales and Their Applications, vol. 234. Longman Scientific & Technical Harlow (1990)Google Scholar
  8. 8.
    Olson, D.M.: A uniformly strongly prime radical. J. Austral. Math. Soc. (Ser. A) 43, 95–102 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)zbMATHCrossRefGoogle Scholar
  10. 10.
    Rosenfeld, A.: Fuzzy groups. J. Math. Anal. Appl. 35(3), 512–517 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Wang jin Liu: Fuzzy invariant subgroups and fuzzy ideals. Fuzzy Sets Syst. 8(2), 133–139 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Wang-jin, L.: Operations on fuzzy ideals. Fuzzy Sets Syst. 11(13), 19–29 (1983)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Mukherjee, T.K., Sen, M.K.: On fuzzy ideals of a ring. Fuzzy Sets Syst. 21(1), 99–104 (1987)zbMATHCrossRefGoogle Scholar
  14. 14.
    Swamy, U.M., Swamy, K.L.N.: Fuzzy prime ideals of rings. J. Math. Anal. Appl. 134(1), 94–103 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Yue, Z.: Prime l-fuzzy ideals and primary l-fuzzy ideals. Fuzzy Sets Syst. 27(3), 345–350 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Kumar, R.: Fuzzy semiprimary ideals of rings. Fuzzy Sets Syst. 42(2), 263–272 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Kumar, R.: Fuzzy nil radicals and fuzzy primary ideals. Fuzzy Sets Syst. 43(1), 81–93 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Kumbhojkar, H.V., Bapat, M.S.: Not-so-fuzzy fuzzy ideals. Fuzzy Sets Syst. 37(2), 237–243 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Kumbhojkar, H.V., Bapat, M.S.: On prime and primary fuzzy ideals and their radicals. Fuzzy Sets Syst. 53(2), 203–216 (1993)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Flaulles Boone Bergamaschi
    • 1
    Email author
  • Regivan H. N. Santiago
    • 2
  1. 1.Southwest Bahia State UniversityVitória da ConquistaBrazil
  2. 2.Federal University of Rio Grande do NorteNatalBrazil

Personalised recommendations