Advertisement

A Simulink-Based Infinity Computer Simulator and Some Applications

  • Alberto FalconeEmail author
  • Alfredo Garro
  • Marat S. Mukhametzhanov
  • Yaroslav D. Sergeyev
Conference paper
  • 52 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11974)

Abstract

This paper is dedicated to the Infinity Computer – a new type of a supercomputer allowing one to work numerically with finite, infinite, and infinitesimal numbers in one general framework. The existent software simulators of the Infinity Computer are used already for solving important real-world problems in applied mathematics. However, they are not efficient for solving difficult problems in control theory and dynamics, where visual programming tools like Simulink are used frequently. For this purpose, the main aim of this paper is to introduce a new Simulink-based solution of the Infinity Computer.

Keywords

Infinity computer Scientific computing Numerical differentiation 

References

  1. 1.
    Amodio, P., Iavernaro, F., Mazzia, F., Mukhametzhanov, M.S., Sergeyev, Y.D.: A generalized Taylor method of order three for the solution of initial value problems in standard and infinity floating-point arithmetic. Math. Comput. Simul. 141, 24–39 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bocciarelli, P., D’Ambrogio, A., Falcone, A., Garro, A., Giglio, A.: A model-driven approach to enable the distributed simulation of complex systems. In: Complex Systems Design & Management, Proceedings of the Sixth International Conference on Complex Systems Design & Management, CSD&M 2015, Paris, France, 23–25 November 2015, pp. 171–183 (2015).  https://doi.org/10.1007/978-3-319-26109-6_13Google Scholar
  3. 3.
    Bocciarelli, P., D’Ambrogio, A., Falcone, A., Garro, A., Giglio, A.: A model-driven approach to enable the simulation of complex systems on distributed architectures. In: SIMULATION: Transactions of the Society for Modeling and Simulation International (2018, in Press).  https://doi.org/10.1177/0037549719829828CrossRefGoogle Scholar
  4. 4.
    Calude, C., Dumitrescu, M.: Infinitesimal probabilities based on grossone. Report CDMTCS-536, Centre for Discrete Mathematics and Theoretical Computer Science, University of Auckland, Auckland, New Zealand (2019)Google Scholar
  5. 5.
    Cococcioni, M., Pappalardo, M., Sergeyev, Y.D.: Lexicographic multiobjective linear programming using grossone methodology: theory and algorithm. Appl. Math. Comput. 318, 298–311 (2018)zbMATHGoogle Scholar
  6. 6.
    De Leone, R.: Nonlinear programming and grossone: quadratic programming and the role of constraint qualifications. Appl. Math. Comput. 318, 290–297 (2018)zbMATHGoogle Scholar
  7. 7.
    De Leone, R., Fasano, G., Sergeyev, Y.D.: Planar methods and grossone for the conjugate gradient breakdown in nonlinear programming. Comput. Optim. Appl. 71(1), 73–93 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Falcone, A., Garro, A.: Using the HLA standard in the context of an international simulation project: the experience of the “SMASHTeam”. In: 15th International Conference on Modeling and Applied Simulation, MAS 2016, Held at the International Multidisciplinary Modeling and Simulation Multiconference, I3M 2016, Larnaca, Cyprus, 26–28 September 2016, pp. 121–129. Dime University of Genoa (2016)Google Scholar
  9. 9.
    Falcone, A., Garro, A., Anagnostou, A., Taylor, S.J.E.: An introduction to developing federations with the high level architecture (HLA). In: 2017 Winter Simulation Conference, WSC 2017, Las Vegas, NV, USA, 3–6 December 2017, pp. 617–631 (2017)Google Scholar
  10. 10.
    Falcone, A., Garro, A., D’Ambrogio, A., Giglio, A.: Engineering systems by combining BPMN and HLA-based distributed simulation. In: 2017 IEEE International Conference on Systems Engineering Symposium, ISSE 2017, Vienna, Austria, 11–13 October 2017, pp. 1–6. Institute of Electrical and Electronics Engineers Inc. (2017).  https://doi.org/10.1109/SysEng.2017.8088302
  11. 11.
    Falcone, A., Garro, A., Taylor, S.J.E., Anagnostou, A.: Simplifying the development of hla-based distributed simulations with the HLA development kit software framework (DKF). In: 21st IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications, DS-RT 2017, Rome, Italy, 18–20 October 2017, pp. 216–217 (2017).  https://doi.org/10.1109/DISTRA.2017.8167691
  12. 12.
    Falcone, A., Garro, A., Tundis, A.: Modeling and simulation for the performance evaluation of the on-board communication system of a metro train. In: 13th International Conference on Modeling and Applied Simulation, MAS 2014, Held at the International Multidisciplinary Modeling and Simulation Multiconference, I3M 2014, Bordeaux, France, 10–12 September 2014, pp. 20–29. Dime University of Genoa (2014)Google Scholar
  13. 13.
    Gaudioso, M., Giallombardo, G., Mukhametzhanov, M.S.: Numerical infinitesimals in a variable metric method for convex nonsmooth optimization. Appl. Math. Comput. 318, 312–320 (2018)zbMATHGoogle Scholar
  14. 14.
    Iavernaro, F., Mazzia, F., Mukhametzhanov, M.S., Sergeyev, Y.D.: Conjugate-symplecticity properties of Euler-Maclaurin methods and their implementation on the Infinity Computer. Preprint submitted in Archiv: https://arxiv.org/abs/1807.10952 (2018)
  15. 15.
    Kvasov, D.E., Mukhametzhanov, M.S., Sergeyev, Y.D.: Ill-conditioning provoked by scaling in univariate global optimization and its handling on the Infinity Computer. In: AIP Conference Proceedings, vol. 2070, p. 20011 (2019)Google Scholar
  16. 16.
    Mazzia, F., Sergeyev, Y.D., Iavernaro, F., Amodio, P., Mukhametzhanov, M.S.: Numerical methods for solving ODEs on the Infinity Computer. In: AIP Conference Proceedings, New York, vol. 1776, p. 090033 (2016)Google Scholar
  17. 17.
    Möller, B., Garro, A., Falcone, A., Crues, E.Z., Dexter, D.E.: On the execution control of HLA federations using the SISO space reference FOM. In: 21st IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications, DS-RT 2017, Rome, Italy, 18–20 October 2017, pp. 75–82. Institute of Electrical and Electronics Engineers Inc. (2017).  https://doi.org/10.1109/DISTRA.2017.8167669
  18. 18.
    Rizza, D.: A study of mathematical determination through Bertrand’s paradox. Comput. Optim. Appl. 26(3), 375–395 (2018)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Sergeyev, Y.D.: Computer system for storing infinite, infinitesimal, and finite quantities and executing arithmetical operations with them. USA patent 7,860,914 (2010), EU patent 1728149 (2009), RF patent 2395111 (2010)Google Scholar
  20. 20.
    Sergeyev, Y.D.: Arithmetic of Infinity. Edizioni Orizzonti Meridionali, CS (2003). 2nd edn. (2013)Google Scholar
  21. 21.
    Sergeyev, Y.D.: Numerical point of view on Calculus for functions assuming finite, infinite, and infinitesimal values over finite, infinite, and infinitesimal domains. Nonlinear Anal. Ser. A: Theory Methods Appl. 71(12), e1688–e1707 (2009)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Sergeyev, Y.D.: Higher order numerical differentiation on the Infinity Computer. Optim. Lett. 5(4), 575–585 (2011)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Sergeyev, Y.D., Garro, A.: Observability of turing machines: a refinement of the theory of computation. Informatica 21(3), 425–454 (2010)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Sergeyev, Y.D., Garro, A.: Single-tape and multi-tape Turing machines through the lens of the grossone methodology. J. Supercomput. 65(2), 645–663 (2013)CrossRefGoogle Scholar
  25. 25.
    Sergeyev, Y.D., Kvasov, D.E., Mukhametzhanov, M.S.: On strong homogeneity of a class of global optimization algorithms working with infinite and infinitesimal scales. Commun. Nonlinear Sci. Numer. Simul. 59, 319–330 (2018)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Sergeyev, Y.D., Mukhametzhanov, M.S., Mazzia, F., Iavernaro, F., Amodio, P.: Numerical methods for solving initial value problems on the Infinity Computer. Int. J. Unconv. Comput. 12(1), 3–23 (2016)Google Scholar
  27. 27.
    Sergeyev, Y.D.: Numerical infinities and infinitesimals: methodology, applications, and repercussions on two Hilbert problems. EMS Surv. Math. Sci. 4, 219–320 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Informatics, Modeling, Electronics and Systems Engineering (DIMES)University of CalabriaRendeItaly

Personalised recommendations