Stability Analysis of DESA Optimization Algorithm

  • Rizavel C. AddaweEmail author
  • Joselito C. Magadia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11974)


This paper investigates the dynamics of the hybrid evolutionary optimization algorithm, Differential Evolution-Simulated Annealing (DESA) algorithm with the binomial crossover and SA-like selection operators. A detailed mathematical framework of the operators of the DESA/rand/1/bin algorithm is provided to characterize the behavior of the DESA-population system. In DESA, the SA-like selection operation provides a nonzero probability of accepting a deteriorated solution that decreases with a sufficient number of generations. This paper shows that the system defined by the DESA-population is stable. Moreover, the DESA-population system time constant, learning and momentum rates are dependent on the value of the crossover constant and the probability of accepting deterioration in the quality of the objective function.


Differential evolution - simulated annealing Stability analysis Lyapunov’s theorem 



The author RCA would like to thank the University of the Philippines Baguio, Baguio City, Philippines through the Ph.D. Incentive Grant and Research Dissemination Grant.


  1. 1.
    Storn, R., Price, K.: Differential evolution - a simple and efficient adaptive scheme for global optimization over continuous spaces. International Computer Science Institute, Berkeley, TR-95-012 (1995)Google Scholar
  2. 2.
    Back, T.: Evolution Strategies, Evolutionary Programming. Genetic Algorithms. Oxford University Press, New York (1996)zbMATHGoogle Scholar
  3. 3.
    Eiben, A., Rudolph, G.: Theory of evolutionary algorithms: a bird’s eye view. Theor. Comput. Sci. 229(1–2), 3–9 (1999)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution - an updated survey. Swarm Evol. Comput. 27, 1–30 (2016)CrossRefGoogle Scholar
  5. 5.
    Zielinski, K., Peters, D., Laur, R.: Run time analysis regarding stopping criteria for differential evolution and particle swarm optimization. In: Proceedings of the 1st International Conference on Process/System Modelling/Simulation/Optimization, vol. 1, pp. 235–243 (2005)Google Scholar
  6. 6.
    Zaharie, D.: Critical values for the control parameters of differential evolution algorithms. In: Proceedings 8th International Mendel Conference Soft Computing, pp. 62–67 (2002)Google Scholar
  7. 7.
    Zaharie, D.: Influence of crossover on the behavior of differential evolution algorithms. Appl. Soft Comput. 9(3), 1126–1138 (2009)CrossRefGoogle Scholar
  8. 8.
    Dasgupta, S., Das, S., Biswas, A., Abraham, A.: On stability and convergence of the population-dynamics in differential evolution. AI Commun. 22(1), 1–20 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Das, S., Abraham, A., Konar, A.: Modeling and analysis of the population-dynamics of differential evolution algorithm. In: Das, s, Abraham, A., Konar, A. (eds.) Metaheuristic Clustering. SCI, vol. 178, pp. 111–135. Springer, Berlin (2009). Scholar
  10. 10.
    Kvasov, D.E., Mukhametzhanov, M.S.: Metaheuristic vs. deterministic global optimization algorithms: the univariate case. Appl. Math. Comput. 318, 245–259 (2018)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Xue, F., Sanderson, C., Graves, J.: Modeling and convergence analysis of a continuous multi-objective differential evolution algorithm. IEEE Press, Edinburgh, UK (2005)Google Scholar
  12. 12.
    Zhao, Y., Wang, J., Song, Y.: An improved differential evolution to continuous domains and its convergence. In: Proceedings of the 1st ACM/SIGEVO Summit on Genetic and Evolutionary Computation (GEC 2009), pp. 1061–1064 (2009)Google Scholar
  13. 13.
    Ghosh, S., Das, S., Vasilakos, A.V., Suresh, K.: On convergence of differential evolution over a class of continuous functions with unique global optimum. IEEE Trans. Syst. Man Cybern. B 42(1), 107–124 (2012)CrossRefGoogle Scholar
  14. 14.
    Zhan, Z., Zhang, J.: Enhanced differential evolution with random walk. In: Proceedings of the 14th International Conference on Genetic and Evolutionary Computation Conference Companion (GECCO 2012), pp. 1513–1514 (2012)Google Scholar
  15. 15.
    Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Storn, R., Price, K.: Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Addawe, R., Adorio, E., Addawe, J., Magadia, J.: DESA: a hybrid optimization algorithm for high dimensional functions. In: Proceedings of the Eight IASTED International Conference on Control and Applications, pp. 316–321, ACTA Press, Montreal, Canada (2006)Google Scholar
  18. 18.
    Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Application to Biology, Control, and Artificial Intelligence. University of Michigan Press, Ann Arbor (1975)zbMATHGoogle Scholar
  19. 19.
    Deb, K., Kumar, A.: Real-coded genetic algorithms with simulated binary crossover: studies on multimodal and multiobjective problems. Complex Syst. 9, 431–454 (1995)Google Scholar
  20. 20.
    Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution. NCS. Springer, Heidelberg (2005). Scholar
  21. 21.
    Yang, X.-S., He, X.: Firefly algorithm: recent advances and applications. Int. J. Swarm Intell. 1, 36–50 (2013)CrossRefGoogle Scholar
  22. 22.
    Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-Filling Curves. Springer, New York (2013). Scholar
  23. 23.
    Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-Convex Constraints: Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2010)zbMATHGoogle Scholar
  24. 24.
    Sergeyev, Y.D., Kvasov, D.E., Mukhametzhanov, M.S.: On the efficiency of nature-inspired metaheuristics in expensive global optimization with limited budget. Sci. Rep. 8, article 453 (2018)Google Scholar
  25. 25.
    Horst, R., Pardalos, P.M. (eds.): Handbook of Global Optimization, vol. 1. Kluwer Academic Publishers, Dordrecht (1995)zbMATHGoogle Scholar
  26. 26.
    Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set of lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Suzuki, J.: A Markov chain analysis on simple genetic algorithms. IEEE Trans. Syst. Man Cybern. 25, 655–659 (1995)CrossRefGoogle Scholar
  28. 28.
    Eiben, A.E., Aarts, E.H.L., Van Hee, K.M.: Global convergence of genetic algorithms: a Markov chain analysis. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 3–12. Springer, Heidelberg (1991). Scholar
  29. 29.
    De Jong, K.A., Spears, W.M., Gordon, D.F.: Using Markov chains to analyze GAFOS. In: Proceedings Foundation of Genetic Algorithm, pp. 115–137 (1994)Google Scholar
  30. 30.
    Rudolph, G.: Convergence analysis of canonical genetic algorithms. IEEE Trans. Neural Netw. 5(1), 96–101 (1994)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Vose, M.: Modeling simple genetic algorithms. Evol. Comput. 3(4), 453–472 (1996)CrossRefGoogle Scholar
  32. 32.
    Qi, X., Palmieri, F.: Theoretical analysis of evolutionary algorithms with an infinite population size in continuous space part I: basic properties of selection and mutation. IEEE Trans. Neural Netw. 5(1), 102–119 (1994)CrossRefGoogle Scholar
  33. 33.
    Peck, C.C., Dhawan, A.P.: Genetic algorithms as global random search methods: an alternative perspective. Evol. Comput. 3(1), 39–80 (1995)CrossRefGoogle Scholar
  34. 34.
    Addawe, R., Addawe, J., Magadia, J.: Optimization of seasonal ARIMA models using differential evolution - simulated annealing (DESA) algorithm in forecasting dengue cases in Baguio City. In: AIP Conference Proceedings, vol. 1776, pp. 090021–090028 (2016)Google Scholar
  35. 35.
    Addawe, R., Magadia, J.: Differential Evolution-Simulated Annealing (DESA) algorithm for fitting autoregressive models to data. In: OPT-i 2014 International Conference on Engineering and Applied Sciences Optimization. National Technical University, Kos Island, Greece (2014)Google Scholar
  36. 36.
    Addawe, R., Addawe, J., Sueno, M., Magadia, J.: Differential evolution-simulated annealing for multiple sequence alignment. IOP Conf. Ser. J. Phys. Conf. Ser. 893, 012061 (2016)CrossRefGoogle Scholar
  37. 37.
    Kirk, W., Sims, B. (eds.): Handbook of Metric Fixed Point Theory. Kluwer Academic, London (2001)zbMATHGoogle Scholar
  38. 38.
    Fletcher, R.: Practical Methods of Optimization, 2nd edn. Wiley, Chichester (1987)zbMATHGoogle Scholar
  39. 39.
    Zaharie, D.: On the explorative power of differential evolution. In: 3rd International Workshop on Symbolic and Numerical Algorithms on Scientific Computing (SYNASC 2001) (2001)Google Scholar
  40. 40.
    Das, S., Konar, A., Chakraborty, U.: Two improved differential evolution schemes for faster global search. In: ACM-SIGEVO Proceedings of GECCO Washington D.C., pp. 991–998 (2005)Google Scholar
  41. 41.
    Anwal, P.: Generalized Functions: Theory and Technique, 2nd edn. Birkher, Boston MA (1998)Google Scholar
  42. 42.
    Hahn, W.: Theory and Application of Lyapunov’s Direct Method. Prentice-Hall, Englewood Cliffs (1963)zbMATHGoogle Scholar
  43. 43.
    Snyman, J.A.: Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms. Springer, Berlin (2005). Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of the Philippines BaguioBaguioPhilippines
  2. 2.University of the Philippines School of StatisticsQuezon CityPhilippines

Personalised recommendations