Advertisement

Epidemic Spreading Curing Strategy Over Directed Networks

  • Clara PizzutiEmail author
  • Annalisa Socievole
Conference paper
  • 16 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11974)

Abstract

Epidemic processes on networks have been thoroughly investigated in different research fields including physics, biology, computer science and medicine. Within this research area, a challenge is the definition of curing strategies able to suppress the epidemic spreading while exploiting a minimal quantity of curing resources. In this paper, we model the network under analysis as a directed graph where a virus spreads from node to node with different spreading and curing rates. Specifically, we adopt an approximation of the Susceptible-Infected-Susceptible (SIS) epidemic model, the N-Intertwined Mean Field Approximation (NIMFA). In order to control the diffusion of the virus while limiting the total cost needed for curing the whole network, we formalize the problem of finding an Optimal Curing Policy (OCP) as a constrained optimization problem and propose a genetic algorithm (GA) to solve it. Differently from a previous work where we proposed a GA for solving the OCP problem on undirected networks, here we consider the formulation of the optimization problem for directed weighted networks and extend the GA method to deal with not symmetric adjacency matrices that are not diagonally symmetrizable.

Keywords

Epidemic spreading NIMFA model Directed networks Genetic algorithms 

References

  1. 1.
    Borgs, C., Chayes, J., Ganesh, A., Saberi, A.: How to distribute antidote to control epidemics. Random Struct. Algorithms 37(2), 204–222 (2010)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Concatto, F., Zunino, W., Giancoli, L.A., Santiago, R., Lamb, L.C.: Genetic algorithm for epidemic mitigation by removing relationships. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 761–768. ACM (2017)Google Scholar
  3. 3.
    Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186, 311–338 (2000)CrossRefGoogle Scholar
  4. 4.
    Deb, K., Jain, H.: Self-adaptive parent to mean-centric recombination for real-parameter optimization. Tech. rep., Indian Institute of Technology Kanpur (2011)Google Scholar
  5. 5.
    Gourdin, E., Omic, J., Van Mieghem, P.: Optimization of network protection against virus spread. In: Proceedings of the 8th International Workshop on Design of Reliable Communication Networks (DRCN), 2011, pp. 659–667 (2011)Google Scholar
  6. 6.
    Grant, M., Boyd, S., Ye, Y.: CVX: Matlab software for disciplined convex programming (2008).  https://doi.org/10.1155/2013/506240. 11 pages, Article ID 506240zbMATHGoogle Scholar
  7. 7.
    Lahiri, M., Cebrian, M.: The genetic algorithm as a general diffusion model for social networks. In: AAAI (2010)Google Scholar
  8. 8.
    Lajmanovich, A., Yorke, J.A.: A deterministic model for gonorrhea in a nonhomogeneous population. Math. Biosci. 28(3), 221–236 (1976) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Liao, J.Q., Hu, X.B., Wang, M., Leeson, M.S.: Epidemic modelling by ripple-spreading network and genetic algorithm. Math. Probl. Eng. 2013 (2013)Google Scholar
  10. 10.
    McKendrick, A.: Applications of mathematics to medical problems. Proceedings Edinb. Math Soc. 14, 98–130 (1926)Google Scholar
  11. 11.
    Newman, M.: Spread of epidemic disease on networks. Phys. Rev. E 66(1), 016128 (2002)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Nowzari, C., Preciado, V.M., Pappas, G.J.: Analysis and control of epidemics: a survey of spreading processes on complex networks. IEEE Control Syst. 36(1), 26–46 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ottaviano, S., De Pellegrini, F., Bonaccorsi, S., Van Mieghem, P.: Optimal curing policy for epidemic spreading over a community network with heterogeneous population. J. Complex Netw. 6(5), 800–829 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Parousis-Orthodoxou, K., Vlachos, D.: Evolutionary algorithm for optimal vaccination scheme. J. Phys. Conf. Ser. 490, 012027 (2014). IOP PublishingCrossRefGoogle Scholar
  15. 15.
    Pastor-Satorras, R., Castellano, C., Mieghem, P.V., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87(3), 925–979 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86(14), 99–108 (2014)Google Scholar
  17. 17.
    Pizzuti, C., Socievole, A.: A genetic algorithm for finding an optimal curing strategy for epidemic spreading in weighted networks. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, pp. 498–504. ACM, New York (2018)Google Scholar
  18. 18.
    Pizzuti, C., Socievole, A.: Optimal curing strategy enhancement of epidemic processes with self-adaptive SBX crossover. In: Cagnoni, S., Mordonini, M., Pecori, R., Roli, A., Villani, M. (eds.) WIVACE 2018. CCIS, vol. 900, pp. 151–162. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-21733-4_12CrossRefGoogle Scholar
  19. 19.
    Prakash, B.A., Adamic, L., Iwashyna, T., Tong, H., Faloutsos, C.: Fractional immunization in networks. In: Proceedings of the SIAM Data Mining Conference, pp. 659–667 (2013)Google Scholar
  20. 20.
    Preciado, V.M., Zargham, M., Enyioha, C., Jadbabaie, A., Pappas, G.J.: Optimal vaccine allocation to control epidemic outbreaks in arbitrary networks. In: Proceedings of the 52nd IEEE Conference on Decision and Control, CDC 2013, December 10–13, 2013, Firenze, Italy, pp. 7486–7491 (2013)Google Scholar
  21. 21.
    Preciado, V.M., Zargham, M., Enyioha, C., Jadbabaie, A., Pappas, G.J.: Optimal resource allocation for network protection against spreading processes. IEEE Trans. Control Netw. Syst. 1(1), 99–108 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Sahneh, F.D., Scoglio, C., Van Mieghem, P.: Generalized epidemic mean-field model for spreading processes over multilayer complex networks. IEEE/ACM Trans. Netw. 21(5), 1609–1620 (2013)CrossRefGoogle Scholar
  23. 23.
    Tütüncü, R.H., Toh, K.C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using SDPT3. Math. Program. 95(2), 189–217 (2003)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Van Mieghem, P., Omic, J.: In-homogeneous virus spread in networks. arxiv:1306.2588 (2013)
  25. 25.
    Van Mieghem, P., Omic, J., Kooij, R.: Virus spread in networks. IEEE/ACM Trans. Netw. 17(1), 1–14 (2009)CrossRefGoogle Scholar
  26. 26.
    Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Wang, Y., Chakrabarti, D., Wang, C., Faloutsos, C.: Epidemic spreading in real networks: an eigenvalue viewpoint. In: Proceedings of International Symposium on Reliable Distributed Systems (SRDS), pp. 25–34 (2003)Google Scholar
  28. 28.
    Zhai, X., Zheng, L., Wang, J., Tan, C.W.: Optimization algorithms for epidemic evolution in broadcast networks. In: 2013 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1540–1545. IEEE (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute for High Performance Computing and Networking (ICAR)National Research Council of Italy (CNR)RendeItaly

Personalised recommendations