Advertisement

Computed Tomography Imaging of Epicardial Adipose Tissue

  • Bastian Balcer
  • Tienush Rassaf
  • Amir Abbas MahabadiEmail author
Chapter
  • 30 Downloads
Part of the Contemporary Cardiology book series (CONCARD)

Abstract

Computed tomography (CT) assessment of epicardial adipose tissue (EAT) is considered the gold standard, especially for research purposes. Using semiautomated three-dimensional quantification, non-contrast- or contrast-enhanced cardiac CT imaging allows for reliable assessment of both epicardial adipose tissue volume and attenuation. Once, CT imaging is performed, information of epicardial fat is readily available. There is overwhelming data on the strong association of CT-derived EAT volume with traditional cardiovascular risk factors, presence and progression of coronary atherosclerosis, and coronary artery disease manifestation. In addition to EAT volume, CT-derived fat attenuation has gained interest, as it reflects metabolic and inflammatory activity of this visceral fat depot. Besides overall EAT, also peri-coronary fat as its component directly surrounding the coronary arteries shows an even more distinct link with disease manifestation, supporting the hypothesis of a local impact of visceral adipose tissue on atherosclerosis development in the underlying vasculature. This book chapter gives an overview over the existing literature, described methods for quantification of EAT using CT imaging of the heart, and provides a perspective of data we might expect in this field in the future.

Keywords

Computed tomography Epicardial adipose tissue Peri-coronary adipose tissue Cardiovascular disease Prevention 

References

  1. 1.
    Kannel WB, Dawber TR, Kagan A, Revotskie N, Stokes J 3rd. Factors of risk in the development of coronary heart disease--six year follow-up experience. The Framingham Study. Ann Intern Med. 1961;55:33–50.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ford I, Murray H, Packard CJ, Shepherd J, Macfarlane PW, Cobbe SM. Long-term follow-up of the West of Scotland Coronary Prevention Study. N Engl J Med. 2007;357:1477–86.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Shah T, Swerdlow D. Detecting, predicting and modifying cardiovascular risk: new and developing strategies. Expert Rev Cardiovasc Ther. 2010;8:1519–21.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Pencina MJ, D’Agostino RB Sr, Larson MG, Massaro JM, Vasan RS. Predicting the 30-year risk of cardiovascular disease: the Framingham Heart Study. Circulation. 2009;119:3078–84.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ajani UA, Ford ES. Has the risk for coronary heart disease changed among U.S. adults? J Am Coll Cardiol. 2006;48:1177–82.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Akosah KO, Schaper A, Cogbill C, Schoenfeld P. Preventing myocardial infarction in the young adult in the first place: how do the National Cholesterol Education Panel III guidelines perform? J Am Coll Cardiol. 2003;41:1475–9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Brindle P, Emberson J, Lampe F, Walker M, Whincup P, Fahey T, et al. Predictive accuracy of the Framingham coronary risk score in British men: prospective cohort study. BMJ. 2003;327:1267.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Möhlenkamp S, Böse D, Mahabadi AA, Heusch G, Erbel R. On the paradox of exercise: coronary atherosclerosis in an apparently healthy marathon runner. Nat Clin Pract Cardiovasc Med. 2007;4:396–401.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    de Las Heras Gala T, Geisel MH, Peters A, Thorand B, Baumert J, Lehmann N, et al. Recalibration of the ACC/AHA Risk Score in two population-based German cohorts. PLoS One. 2016;11:e0164688.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, et al. 2016 European guidelines on cardiovascular disease prevention in clinical practice: the Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J. 2016;37:2315–81.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2018;73:e285–350. Erratum in: J Am Coll Cardiol. 2019;73:3237–3241CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358:1336–45.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Erbel R, Möhlenkamp S, Moebus S, Schmermund A, Lehmann N, Stang A, et al. Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis: the Heinz Nixdorf Recall study. J Am Coll Cardiol. 2010;56:1397–406.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Greenland P, Bonow RO, Brundage BH, Budoff MJ, Eisenberg MJ, Grundy SM, et al. ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography) developed in collaboration with the Society of Atherosclerosis Imaging and Prevention and the Society of Cardiovascular Computed Tomography. J Am Coll Cardiol. 2007;49:378–402.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mahabadi AA, Nasir K, Rassaf T. Routine CAC-scoring prior to initiation of statin therapy – a European perspective. Eur J Prev Cardiol. 2019;26:1559–61.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15:827–32.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mahabadi AA, Möhlenkamp S, Moebus S, Dragano N, Kalsch H, Bauer M, et al. The Heinz Nixdorf Recall study and its potential impact on the adoption of atherosclerosis imaging in European primary prevention guidelines. Curr Artheroscler Rep. 2011;13:367–72.CrossRefGoogle Scholar
  18. 18.
    Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, Budaj A, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;34:2949–3003.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Baker AR, Silva NF, Quinn DW, Harte AL, Pagano D, Bonser RS, et al. Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovasc Diabetol. 2006;5:1.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Laine P, Kaartinen M, Penttila A, Panula P, Paavonen T, Kovanen PT. Association between myocardial infarction and the mast cells in the adventitia of the infarct-related coronary artery. Circulation. 1999;99:361–9.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003;108:2460–6.CrossRefGoogle Scholar
  22. 22.
    Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation. 2000;102:1296–301.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ouchi N, Kihara S, Funahashi T, Nakamura T, Nishida M, Kumada M, et al. Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation. 2003;107:671–4.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007;116:39–48.CrossRefGoogle Scholar
  25. 25.
    Pou KM, Massaro JM, Hoffmann U, Vasan RS, Maurovich-Horvat P, Larson MG, et al. Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: the Framingham Heart Study. Circulation. 2007;116:1234–41.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Rosito GA, Massaro JM, Hoffmann U, Ruberg FL, Mahabadi AA, Vasan RS, et al. Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation. 2008;117:605–13.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mahabadi AA, Massaro JM, Rosito GA, Levy D, Murabito JM, Wolf PA, et al. Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: the Framingham Heart Study. Eur Heart J. 2009;30:850–6.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Schlett CL, Massaro JM, Lehman SJ, Bamberg F, O’Donnell CJ, Fox CS, et al. Novel measurements of periaortic adipose tissue in comparison to anthropometric measures of obesity, and abdominal adipose tissue. Int J Obes. 2009;33:226–32.CrossRefGoogle Scholar
  29. 29.
    de Vos AM, Prokop M, Roos CJ, Meijs MF, van der Schouw YT, Rutten A, et al. Peri-coronary epicardial adipose tissue is related to cardiovascular risk factors and coronary artery calcification in post-menopausal women. Eur Heart J. 2008;29:777–83.CrossRefGoogle Scholar
  30. 30.
    Al Chekakie MO, Welles CC, Metoyer R, Ibrahim A, Shapira AR, Cytron J, et al. Pericardial fat is independently associated with human atrial fibrillation. J Am Coll Cardiol. 2010;56:784–8.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mahabadi AA, Berg MH, Lehmann N, Kälsch H, Bauer M, Kara K, et al. Association of epicardial fat with cardiovascular risk factors and incident myocardial infarction in the general population: the Heinz Nixdorf Recall Study. J Am Coll Cardiol. 2013;61:1388–95.CrossRefGoogle Scholar
  32. 32.
    Mahabadi AA, Lehmann N, Möhlenkamp S, Pundt N, Dykun I, Roggenbuck U, et al. Noncoronary measures enhance the predictive value of cardiac CT above traditional risk factors and CAC score in the general population. J Am Coll Cardiol. 2016;9:1177–85.CrossRefGoogle Scholar
  33. 33.
    Mahabadi AA, Lehmann N, Kalsch H, Robens T, Bauer M, Dykun I, et al. Association of epicardial adipose tissue with progression of coronary artery calcification is more pronounced in the early phase of atherosclerosis: results from the Heinz Nixdorf recall study. J Am Coll Cardiol. 2014;7:909–16.CrossRefGoogle Scholar
  34. 34.
    Ding J, Hsu FC, Harris TB, Liu Y, Kritchevsky SB, Szklo M, et al. The association of pericardial fat with incident coronary heart disease: the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr. 2009;90:499–504.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ding J, Kritchevsky SB, Harris TB, Burke GL, Detrano RC, Szklo M, et al. The association of pericardial fat with calcified coronary plaque. Obesity (Silver Spring). 2008;16:1914–9.CrossRefGoogle Scholar
  36. 36.
    Fox CS, Gona P, Hoffmann U, Porter SA, Salton CJ, Massaro JM, et al. Pericardial fat, intrathoracic fat, and measures of left ventricular structure and function: the Framingham Heart Study. Circulation. 2009;119:1586–91.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Oikonomou EK, Marwan M, Desai MY, Mancio J, Alashi A, Hutt Centeno E, et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data. Lancet. 2018;392:929–39.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Balcer B, Dykun I, Schlosser T, Forsting M, Rassaf T, Mahabadi AA. Pericoronary fat volume but not attenuation differentiates culprit lesions in patients with myocardial infarction. Atherosclerosis. 2018;276:182–8.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Mahabadi AA, Balcer B, Dykun I, Forsting M, Schlosser T, Heusch G, et al. Cardiac computed tomography-derived epicardial fat volume and attenuation independently distinguish patients with and without myocardial infarction. PLoS One. 2017;12:e0183514.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Hell MM, Achenbach S, Schuhbaeck A, Klinghammer L, May MS, Marwan M. CT-based analysis of pericoronary adipose tissue density: relation to cardiovascular risk factors and epicardial adipose tissue volume. J Cardiovasc Comput Tomogr. 2016;10:52–60.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Nichols JH, Samy B, Nasir K, Fox CS, Schulze PC, Bamberg F, et al. Volumetric measurement of pericardial adipose tissue from contrast-enhanced coronary computed tomography angiography: a reproducibility study. J Cardiovasc Comput Tomogr. 2008;2:288–95.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Hell MM, Ding X, Rubeaux M, Slomka P, Gransar H, Terzopoulos D, et al. Epicardial adipose tissue volume but not density is an independent predictor for myocardial ischemia. J Cardiovasc Comput Tomogr. 2016;10:141–9.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Schlett CL, Ferencik M, Kriegel MF, Bamberg F, Ghoshhajra BB, Joshi SB, et al. Association of pericardial fat and coronary high-risk lesions as determined by cardiac CT. Atherosclerosis. 2012;222:129–34.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Maurovich-Horvat P, Kallianos K, Engel LC, Szymonifka J, Schlett CL, Koenig W, et al. Relationship of thoracic fat depots with coronary atherosclerosis and circulating inflammatory biomarkers. Obesity (Silver Spring). 2015;23:1178–84.CrossRefGoogle Scholar
  45. 45.
    Commandeur F, Goeller M, Betancur J, Cadet S, Doris M, Chen X, et al. Deep learning for quantification of epicardial and thoracic adipose tissue from non-contrast CT. IEEE Trans Med Imaging. 2018;37:1835–46.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Chevalier M, Moran P, Ten JI, Fernandez Soto JM, Cepeda T, Vano E. Patient dose in digital mammography. Med Phys. 2004;31:2471–9.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Vonder M, Vliegenthart R, Kaatee MA, van der Aalst CM, van Ooijen PMA, de Bock GH, et al. High-pitch versus sequential mode for coronary calcium in individuals with a high heart rate: potential for dose reduction. J Cardiovasc Comput Tomogr. 2018;12:298–304.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Thanassoulis G, Massaro JM, Hoffmann U, Mahabadi AA, Vasan RS, O’Donnell CJ, et al. Prevalence, distribution, and risk factor correlates of high pericardial and intrathoracic fat depots in the Framingham Heart Study. Circ Cardiovasc Imaging. 2010;3:559–66.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Alexopoulos N, Melek BH, Arepalli CD, Hartlage GR, Chen Z, Kim S, et al. Effect of intensive versus moderate lipid-lowering therapy on epicardial adipose tissue in hyperlipidemic post-menopausal women: a substudy of the BELLES trial (Beyond Endorsed Lipid Lowering with EBT Scanning). J Am Coll Cardiol. 2013;61:1956–61.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Greif M, Becker A, von Ziegler F, Lebherz C, Lehrke M, Broedl UC, et al. Pericardial adipose tissue determined by dual source CT is a risk factor for coronary atherosclerosis. Arterioscler Thromb Vasc Biol. 2009;29:781–6.CrossRefGoogle Scholar
  51. 51.
    Taguchi R, Takasu J, Itani Y, Yamamoto R, Yokoyama K, Watanabe S, et al. Pericardial fat accumulation in men as a risk factor for coronary artery disease. Atherosclerosis. 2001;157:203–9.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Raggi P, Zona S, Scaglioni R, Stentarelli C, Ligabue G, Besutti G, et al. Epicardial adipose tissue and coronary artery calcium predict incident myocardial infarction and death in HIV-infected patients. J Cardiovasc Comput Tomogr. 2015;9:553–8.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kunita E, Yamamoto H, Kitagawa T, Ohashi N, Oka T, Utsunomiya H, et al. Prognostic value of coronary artery calcium and epicardial adipose tissue assessed by non-contrast cardiac computed tomography. Atherosclerosis. 2014;233:447–53.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Wong CX, Abed HS, Molaee P, Nelson AJ, Brooks AG, Sharma G, et al. Pericardial fat is associated with atrial fibrillation severity and ablation outcome. J Am Coll Cardiol. 2011;57:1745–51.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Thanassoulis G, Massaro JM, O’Donnell CJ, Hoffmann U, Levy D, Ellinor PT, et al. Pericardial fat is associated with prevalent atrial fibrillation: the Framingham Heart Study. Circ Arrhythm Electrophysiol. 2010;3:345–50.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Mahabadi AA, Lehmann N, Kalsch H, Bauer M, Dykun I, Kara K, et al. Association of epicardial adipose tissue and left atrial size on non-contrast CT with atrial fibrillation: the Heinz Nixdorf Recall Study. Eur Heart J Cardiovasc Imaging. 2014;15:863–9.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Sacks HS, Fain JN. Human epicardial adipose tissue: a review. Am Heart J. 2007;153:907–17.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Cavalcante JL, Tamarappoo BK, Hachamovitch R, Kwon DH, Alraies MC, Halliburton S, et al. Association of epicardial fat, hypertension, subclinical coronary artery disease, and metabolic syndrome with left ventricular diastolic dysfunction. Am J Cardiol. 2012;110:1793–8.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Iacobellis G, Leonetti F, Singh N, Sharma AM. Relationship of epicardial adipose tissue with atrial dimensions and diastolic function in morbidly obese subjects. Int J Cardiol. 2007;115:272–3.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Mahabadi AA, Kahlert HA, Dykun I, Balcer B, Kahlert P, Rassaf T. Epicardial adipose tissue thickness independently predicts severe aortic valve stenosis. J Heart Valve Dis. 2017;26:262–7.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Hajer GR, van Haeften TW, Visseren FL. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J. 2008;29:2959–71.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Torriani M, Oliveira AL, Azevedo DC, Bredella MA, Yu EW. Effects of Roux-en-Y gastric bypass surgery on visceral and subcutaneous fat density by computed tomography. Obes Surg. 2015;25:381–5.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Konishi M, Sugiyama S, Sato Y, Oshima S, Sugamura K, Nozaki T, et al. Pericardial fat inflammation correlates with coronary artery disease. Atherosclerosis. 2010;213:649–55.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Goeller M, Achenbach S, Marwan M, Doris MK, Cadet S, Commandeur F, et al. Epicardial adipose tissue density and volume are related to subclinical atherosclerosis, inflammation and major adverse cardiac events in asymptomatic subjects. J Cardiovasc Comput Tomogr. 2018;12:67–73.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Marwan M, Hell M, Schuhback A, Gauss S, Bittner D, Pflederer T, et al. CT Attenuation of pericoronary adipose tissue in normal versus atherosclerotic coronary segments as defined by intravascular ultrasound. J Comput Assist Tomogr. 2017;41:762–7.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Antonopoulos AS, Sanna F, Sabharwal N, Thomas S, Oikonomou EK, Herdman L, et al. Detecting human coronary inflammation by imaging perivascular fat. Sci Transl Med. 2017;9:eaal2658.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Mahabadi AA, Reinsch N, Lehmann N, Altenbernd J, Kalsch H, Seibel RM, et al. Association of pericoronary fat volume with atherosclerotic plaque burden in the underlying coronary artery: a segment analysis. Atherosclerosis. 2010;211:195–9.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Raggi P, Gadiyaram V, Zhang C, Chen Z, Lopaschuk G, Stillman AE. Statins reduce epicardial adipose tissue attenuation independent of lipid lowering: a potential pleiotropic effect. J Am Heart Assoc. 2019;8:e013104.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Raff GL, Abidov A, Achenbach S, Berman DS, Boxt LM, et al. SCCT guidelines for the interpretation and reporting of coronary computed tomographic angiography. J Cardiovasc Comput Tomogr. 2009;3:122–36.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Achenbach S, Ropers D, Möhlenkamp S, Schmermund A, Muschiol G, Groth J, et al. Variability of repeated coronary artery calcium measurements by electron beam tomography. Am J Cardiol. 2001;87:210–3, A8.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Fuernau G, Fengler K, Desch S, Eitel I, Neumann FJ, Olbrich HG, et al. Culprit lesion location and outcome in patients with cardiogenic shock complicating myocardial infarction: a substudy of the IABP-SHOCK II-trial. Clin Res Cardiol. 2016;105:1030–41.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Moustafa A, Abi-Saleh B, El-Baba M, Hamoui O, AlJaroudi W. Anatomic distribution of culprit lesions in patients with non-ST-segment elevation myocardial infarction and normal ECG. Cardiovasc Diagn Ther. 2016;6:25–33.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Khawaja T, Greer C, Thadani SR, Kato TS, Bhatia K, Shimbo D, et al. Increased regional epicardial fat volume associated with reversible myocardial ischemia in patients with suspected coronary artery disease. J Nucl Cardiol. 2015;22:325–33.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Antoniades C, Antonopoulos AS, Deanfield J. Imaging residual inflammatory cardiovascular risk. Eur Heart J. 2019;  https://doi.org/10.1093/eurheartj/ehz474. [Epub ahead of print].
  75. 75.
    Lehman SJ, Massaro JM, Schlett CL, O’Donnell CJ, Hoffmann U, Fox CS. Peri-aortic fat, cardiovascular disease risk factors, and aortic calcification: the Framingham Heart Study. Atherosclerosis. 2010;210:656–61.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Hoffmann U, Truong QA, Schoenfeld DA, Chou ET, Woodard PK, Nagurney JT, et al. Coronary CT angiography versus standard evaluation in acute chest pain. N Engl J Med. 2012;367:299–308.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Ferencik M, Mayrhofer T, Bittner DO, Emami H, Puchner SB, Lu MT, et al. Use of high-risk coronary atherosclerotic plaque detection for risk stratification of patients with stable chest pain: a secondary analysis of the PROMISE randomized clinical trial. JAMA Cardiol. 2018;3:144–52.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Nielsen LH, Botker HE, Sorensen HT, Schmidt M, Pedersen L, Sand NP, et al. Prognostic assessment of stable coronary artery disease as determined by coronary computed tomography angiography: a Danish multicentre cohort study. Eur Heart J. 2017;38:413–21.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Mahabadi AA, Rassaf T. Imaging of coronary inflammation for cardiovascular risk prediction. Lancet. 2018;392:894–6.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Bastian Balcer
    • 1
  • Tienush Rassaf
    • 1
  • Amir Abbas Mahabadi
    • 1
    Email author
  1. 1.Department of Cardiology and Vascular MedicineWest German Heart and Vascular Center Essen, University Hospital EssenEssenGermany

Personalised recommendations