Advertisement

Autonomic Nervous System Modulation of the Epicardial Adipose Tissue in Heart Failure and Atrial Fibrillation

  • Celina M. Pollard
  • Jennifer Maning
  • Anastasios LymperopoulosEmail author
Chapter
  • 12 Downloads
Part of the Contemporary Cardiology book series (CONCARD)

Abstract

The epicardial adipose tissue (EAT) or epicardial fat, the visceral fat depot in the heart, contains intrinsic adrenergic and cholinergic nerves, which interact with the extrinsic cardiac sympathetic and parasympathetic nervous systems. These EAT nerves represent a significant source of several adipokines and other bioactive molecules, including norepinephrine and epinephrine. The production of these molecules is biologically relevant for the heart, because abnormalities in EAT secretory properties are implicated in the development of pathological conditions, including coronary atherosclerosis, atrial fibrillation, and heart failure. Because sympathetic hyperactivity and parasympathetic (cholinergic) derangement are associated with EAT dysfunction leading to a multitude of adverse cardiac conditions, such as heart failure, diastolic dysfunction, atrial fibrillation, etc., a number of recent studies have focused on exploring the autonomic regulation of EAT as it pertains to heart disease pathogenesis and progression. In this chapter, we provide an overview of these studies, immediately following brief introductions on the regulation of global cardiac function by the two branches of the autonomic nervous system (adrenergic and cholinergic).

Keywords

Autonomic nervous system Atrial fibrillation Epicardial fat Heart failure Signal transduction 

References

  1. 1.
    Wong CX, Ganesan AN, Selvanayagam JB. Epicardial fat and atrial fibrillation: current evidence, potential mechanisms, clinical implications, and future directions. Eur Heart J. 2017;38:1294–302.PubMedCrossRefGoogle Scholar
  2. 2.
    Lymperopoulos A, Koch WJ. Autonomic pharmacology. In: Waldman SA, Terzic A, editors. Pharmacology and therapeutics: principles to practice. Philadelphia: Saunders/Elsevier; 2009. p. 115–39.CrossRefGoogle Scholar
  3. 3.
    Brodde OE, Michel MC. Adrenergic and muscarinic receptors in the human heart. Pharmacol Rev. 1999;51:651–90.PubMedGoogle Scholar
  4. 4.
    Lymperopoulos A. Introduction/general considerations. In: Lymperopoulos A, editor. The cardiovascular adrenergic system. New York: Springer International Publishing; 2015. p. 3–9.Google Scholar
  5. 5.
    Lymperopoulos A, Rengo G, Koch WJ. Adrenergic nervous system in heart failure: pathophysiology and therapy. Circ Res. 2013;113:739–53.PubMedCrossRefGoogle Scholar
  6. 6.
    Capote LA, Mendez Perez R, Lymperopoulos A. GPCR signaling and cardiac function. Eur J Pharmacol. 2015;763:143–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Lymperopoulos A, Garcia D, Walklett K. Pharmacogenetics of cardiac inotropy. Pharmacogenomics. 2014;15:1807–21.PubMedCrossRefGoogle Scholar
  8. 8.
    Lymperopoulos A, Bathgate A. Pharmacogenomics of the heptahelical receptor regulators G-protein-coupled receptor kinases and arrestins: the known and the unknown. Pharmacogenomics. 2012;13:323–41.PubMedCrossRefGoogle Scholar
  9. 9.
    Lymperopoulos A, Rengo G, Koch WJ. Adrenal adrenoceptors in heart failure: fine-tuning cardiac stimulation. Trends Mol Med. 2007;13:503–11.PubMedCrossRefGoogle Scholar
  10. 10.
    Lymperopoulos A. Ischemic emergency? endothelial cells have their own “adrenaline shot” at hand. Hypertension. 2012;60:12–4.PubMedCrossRefGoogle Scholar
  11. 11.
    Bylund DB, Eikenberg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP, et al. International Union of Pharmacology nomenclature of adrenoceptors. Pharmacol Rev. 1994;46(2):121–36.PubMedGoogle Scholar
  12. 12.
    Brodde OE. Beta-adrenoceptors in cardiac disease. Pharmacol Ther. 1993;60:405–30.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Yoshikawa T, Port JD, Asano K, Chidiak P, Bouvier M, Dutcher D, et al. Cardiac adrenergic receptor effects of carvedilol. Eur Heart J. 1996;17(Suppl B):8–16.PubMedCrossRefGoogle Scholar
  14. 14.
    Woodcock EA, Du XJ, Reichelt ME, Graham RM. Cardiac alpha 1-adrenergic drive in pathological remodelling. Cardiovasc Res. 2008;77:452–62.PubMedCrossRefGoogle Scholar
  15. 15.
    Shannon R, Chaudhry M. Effect of alpha1-adrenergic receptors in cardiac pathophysiology. Am Heart J. 2006;152:842–50.PubMedCrossRefGoogle Scholar
  16. 16.
    Philipp M, Hein L. Adrenergic receptor knockout mice: distinct functions of 9 receptor subtypes. Pharmacol Ther. 2004;101:65–74.PubMedCrossRefGoogle Scholar
  17. 17.
    Philipp M, Brede M, Hein L. Physiological significance of alpha(2)-adrenergic receptor subtype diversity: one receptor is not enough. Am J Physiol Regul Integr Comp Physiol. 2002;283:R287–95.PubMedCrossRefGoogle Scholar
  18. 18.
    Hein L, Altman JD, Kobilka BK. Two functionally distinct alpha2-adrenergic receptors regulate sympathetic neurotransmission. Nature. 1999;402:181–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Lymperopoulos A, Rengo G, Funakoshi H, Eckhart AD, Koch WJ. Adrenal GRK2 upregulation mediates sympathetic overdrive in heart failure. Nat Med. 2007;13:315–23.PubMedCrossRefGoogle Scholar
  20. 20.
    Lymperopoulos A, Rengo G, Gao E, Ebert SN, Dorn GW II, Koch WJ. Reduction of sympathetic activity via adrenal-targeted GRK2 gene deletion attenuates heart failure progression and improves cardiac function after myocardial infarction. J Biol Chem. 2010;285:16378–86.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Lymperopoulos A, Rengo G, Zincarelli C, Soltys S, Koch WJ. Modulation of adrenal catecholamine secretion by in vivo gene transfer and manipulation of G protein-coupled receptor kinase-2 activity. Mol Ther. 2008;16:302–7.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Bers DM. Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol. 2008;70:23–49.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Skeberdis VA, Gendviliene V, Zablockaite D, Treinys R, Macianskiene R, Bogdelis A, et al. Beta3-adrenergic receptor activation increases human atrial tissue contractility and stimulates the L-type Ca2+ current. J Clin Invest. 2008;118(9):3219–27.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Gauthier C, Leblais V, Kobzik L, Trochu JN, Khandoudi N, Bril A, et al. The negative inotropic effect of beta3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J Clin Invest. 1998;102(7):1377–84.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Roy A, Guatimosim S, Prado VF. Cholinergic activity as a new target in diseases of the heart. Mol Med. 2015;20:527–37.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Hartzell HC. Regulation of cardiac ion channels by catecholamines, acetylcholine and second messenger systems. Prog Biophys Mol Biol. 1988;52:165–247.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Li DL, Liu BH, Sun L, Zhao M, He X, Yu XJ, Zang WJ. Alterations of muscarinic acetylcholine receptors-2, 4 and alpha7-nicotinic acetylcholine receptor expression after ischaemia/reperfusion in the rat isolated heart. Clin Exp Pharmacol Physiol. 2010;37:1114–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Anderson A, Kulkarni K, Marron Fernandez de Velasco E, Carlblom N, Xia Z, Nakano A, et al. Expression and relevance of the G protein-gated K+ channel in the mouse ventricle. Sci Rep. 2018;8:1192.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Giles W, Noble SJ. Changes in membrane currents in bullfrog atrium produced by acetylcholine. J Physiol. 1976;261(1):103–23.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Dhein S, van Koppen CJ, Brodde OE. Muscarinic receptors in the mammalian heart. Pharmacol Res. 2001;44:161–82.PubMedCrossRefGoogle Scholar
  31. 31.
    Caulfield MP. Muscarinic receptors--characterization, coupling and function. Pharmacol Ther. 1993;58:319–79.PubMedCrossRefGoogle Scholar
  32. 32.
    Agarwal SK, Norby FL, Whitsel EA, Soliman EZ, Chen LY, Loehr LR, et al. Autonomic dysfunction and incidence of atrial fibrillation: results from 20 years follow-up. J Am Coll Cardiol. 2017;69:291–9.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Jungen C, Scherschel K, Eickholt C, Kuklik P, Klatt N, Bork N, et al. Disruption of cardiac cholinergic neurons enhances susceptibility to ventricular arrhythmias. Nat Commun. 2017;8:14155.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    González SA, Forcada P, de Cavanagh EM, Inserra F, Svane JC, Obregón S, et al. Sodium intake is associated with parasympathetic tone and metabolic parameters in mild hypertension. Am J Hypertens. 2012;25:620–4.PubMedCrossRefGoogle Scholar
  35. 35.
    McAreavey D, Neilson JM, Ewing DJ, Russell DC. Cardiac parasympathetic activity during the early hours of acute myocardial infarction. Br Heart J. 1989;62:165–70.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Lombardi F, Sandrone G, Spinnler MT, Torzillo D, Lavezzaro GC, Brusca A, Malliani A. Heart rate variability in the early hours of an acute myocardial infarction. Am J Cardiol. 1996;77:1037–44.PubMedCrossRefGoogle Scholar
  37. 37.
    Grassi G, Seravalle G, Bertinieri G, Turri C, Stella ML, Scopelliti F, Mancia G. Sympathetic and reflex abnormalities in heart failure secondary to ischaemic or idiopathic dilated cardiomyopathy. Clin Sci (Lond). 2001;101:141–6.CrossRefGoogle Scholar
  38. 38.
    Hellermann JP, Jacobsen SJ, Redfield MM, Reeder GS, Weston SA, Roger VL. Heart failure after myocardial infarction: clinical presentation and survival. Eur J Heart Fail. 2005;7:119–25.PubMedCrossRefGoogle Scholar
  39. 39.
    Lara A, Damasceno DD, Pires R, Gros R, Gomes ER, Gavioli M, et al. Dysautonomia due to reduced cholinergic neurotransmission causes cardiac remodeling and heart failure. Mol Cell Biol. 2010;30:1746–56.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Gerber Y, Weston SA, Enriquez-Sarano M, Manemann SM, Chamberlain AM, Jiang R, Roger VL. Atherosclerotic burden and heart failure after myocardial infarction. JAMA Cardiol. 2016;1:156–62.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Zhou Q, Zhang L, Wang K, Xu X, Ji M, Zhang F, Wang H, Hou Y. Effect of interconnection between cervical vagus trunk, epicardial fat pad on sinus node function, and atrial fibrillation. Pacing Clin Electrophysiol. 2014;37:356–63.PubMedCrossRefGoogle Scholar
  42. 42.
    Pabon MA, Manocha K, Cheung JW, Lo JC. Linking arrhythmias and adipocytes: insights, mechanisms, and future directions. Front Physiol. 2018;9:1752.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Coumel P. Autonomic influences in atrial tachyarrhythmias. J Cardiovasc Electrophysiol. 1996;7:999–1007.PubMedCrossRefGoogle Scholar
  44. 44.
    Zipes DP, Knope RF. Electrical properties of the thoracic veins. Am J Cardiol. 1972;29:372–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Harvey RD, Belevych AE. Muscarinic regulation of cardiac ion channels. Br J Pharmacol. 2003;139:1074–84.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Pollard CM, Desimine VL, Wertz SL, Perez A, Parker BM, Maning J, et al. Deletion of osteopontin enhances β2-adrenergic receptor-dependent anti-fibrotic signaling in cardiomyocytes. Int J Mol Sci. 2019;20:E1396.PubMedCrossRefGoogle Scholar
  47. 47.
    Rosenshtraukh LV, Zaitsev AV, Fast VG, Pertsov AM, Krinsky VI. Vagally induced block and delayed conduction as a mechanism for circus movement tachycardia in frog atria. Circ Res. 1989;64:213–26.PubMedCrossRefGoogle Scholar
  48. 48.
    Francis GS. Should asymptomatic ventricular arrhythmias in patients with congestive heart failure be treated with antiarrhythmic drugs? J Am Coll Cardiol. 1988;12:274–83.PubMedCrossRefGoogle Scholar
  49. 49.
    Wu CK, Tsai HY, Su MY, Wu YF, Hwang JJ, Tseng WY, et al. Pericardial fat is associated with ventricular tachyarrhythmia and mortality in patients with systolic heart failure. Atherosclerosis. 2015;241:607–14.PubMedCrossRefGoogle Scholar
  50. 50.
    Chen PS, Chen LS, Fishbein MC, Lin SF, Nattel S. Role of the autonomic nervous system in atrial fibrillation: pathophysiology and therapy. Circ Res. 2014;114:1500–15.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Oh S, Zhang Y, Bibevski S, Marrouche NF, Natale A, Mazgalev TN. Vagal denervation and atrial fibrillation inducibility: epicardial fat pad ablation does not have long-term effects. Heart Rhythm. 2006;3:701–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Nakagawa H, Scherlag BJ, Patterson E, Ikeda A, Lockwood D, Jackman WM. Pathophysiologic basis of autonomic ganglionated plexus ablation in patients with atrial fibrillation. Heart Rhythm. 2009;6(12 Suppl):S26–34.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Pokushalov E, Kozlov B, Romanov A, Strelnikov A, Bayramova S, Sergeevichev D, et al. Long-term suppression of atrial fibrillation by botulinum toxin injection into epicardial fat pads in patients undergoing cardiac surgery: one year follow up of a randomized pilot study. Circ Arrhythm Electrophysiol. 2015;8:1334–41.PubMedCrossRefGoogle Scholar
  54. 54.
    Couselo-Seijas M, López-Canoa JN, Agra-Bermejo RM, Díaz-Rodriguez E, Fernandez AL, Martinez-Cereijo JM, et al. Cholinergic activity regulates the secretome of epicardial adipose tissue: association with atrial fibrillation. J Cell Physiol. 2019;234(7):10512–22.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Yanagisawa S, Inden Y, Mizutani Y, Fujii A, Kamikubo Y, Kanzaki Y, et al. Vagal response in cryoballoon ablation of atrial fibrillation and autonomic nervous system: Utility of epicardial adipose tissue location. J Arrhythm. 2017;33(4):275–82.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Balcioğlu AS, Çiçek D, Akinci S, Eldem HO, Bal UA, Okyay K, Müderrisoğlu H. Arrhythmogenic evidence for epicardial adipose tissue: heart rate variability and turbulence are influenced by epicardial fat thickness. Pacing Clin Electrophysiol. 2015;38:99–106.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Kim MK, Tanaka K, Kim MJ, Matsuo T, Tomita T, Ohkubo H, et al. Epicardial fat tissue: relationship with cardiorespiratory fitness in men. Med Sci Sports Exerc. 2010;42:463–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Quan KJ, Lee JH, Van Hare GF, Biblo LA, Mackall JA, Carlson MD. Identification and characterization of atrioventricular parasympathetic innervation in humans. J Cardiovasc Electrophysiol. 2002;13:735–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Zhou Q, Zhang L, Wang K, Xu X, Ji M, Zhang F, et al. Effect of interconnection between cervical vagus trunk, epicardial fat pad on sinus node function, and atrial fibrillation. Pacing Clin Electrophysiol. 2014;37:356–63.PubMedCrossRefGoogle Scholar
  60. 60.
    White CM, Sander S, Coleman CI, Gallagher R, Takata H, Humphrey C, et al. Impact of epicardial anterior fat pad retention on postcardiothoracic surgery atrial fibrillation incidence: the AFIST-III Study. J Am Coll Cardiol. 2007;49:298–303.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Burgeiro A, Fuhrmann A, Cherian S, Espinoza D, Jarak I, Carvalho RA, et al. Glucose uptake and lipid metabolism are impaired in epicardial adipose tissue from heart failure patients with or without diabetes. Am J Physiol Endocrinol Metab. 2016;310:E550–64.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Katlandur H, Ozbek K, Keser A. Letter to the Editor: the effect of autonomic nervous system on the impairment of glucose uptake and lipid metabolism in epicardial adipose tissue. Am J Physiol Endocrinol Metab. 2016;310:E862.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    White A. Cardiac sympathetic denervation in the failing heart: a role for epicardial adipose tissue. Circ Res. 2016;118(8):1189–91.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Parisi V, Rengo G, Perrone-Filardi P, Pagano G, Femminella GD, Paolillo S, et al. Increased epicardial adipose tissue volume correlates with cardiac sympathetic denervation in patients with heart failure. Circ Res. 2016;118(8):1244–53.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Iacobellis G, Leonetti F, Singh N, M Sharma A. Relationship of epicardial adipose tissue with atrial dimensions and diastolic function in morbidly obese subjects. Int J Cardiol. 2007;115:272–3.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Iacobellis G, Singh N, Wharton S, Sharma AM. Substantial changes in epicardial fat thickness after weight loss in severely obese subjects. Obesity (Silver Spring). 2008;16:1693–7.CrossRefGoogle Scholar
  67. 67.
    Packer M. Leptin-aldosterone-neprilysin axis: identification of its distinctive role in the pathogenesis of the three phenotypes of heart failure in people with obesity. Circulation. 2018;137:1614–31.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Celina M. Pollard
    • 1
  • Jennifer Maning
    • 1
  • Anastasios Lymperopoulos
    • 1
    Email author
  1. 1.Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical SciencesCollege of Pharmacy, Nova Southeastern UniversityFort LauderdaleUSA

Personalised recommendations