Material Agnostic Data-Driven Framework to Develop Structure-Property Linkages

  • Dipen Patel
  • Triplicane Parthasarathy
  • Craig PrzybylaEmail author


The concept of Integrated Computational Materials Engineering (ICME) is aimed at accelerating the development and insertion of new materials in engineering applications. ICME approach relies on the development and use in design of relationships between processing and structure, and its corresponding property/performance. This poses a constraint on computational speed, which is difficult to achieve without losing the physics. The concept of building data-driven, material agnostic models to describe process-structure-property linkages has the potential to satisfy this need. In recent works, this has been introduced on a wide variety of materials at multiple length scales of interest. We review these developments. More specifically, a review of the fusion of material science and data science is presented. The framework addresses curation of materials’ knowledge from the available datasets in computationally efficient manner to extract and use the processing-structure-property relationships.


Machine learning Transverse cracking strength Ceramic matrix composites Composite characterization Fiber spacing n-point statistics Matrix cracking strength Finite element simulation Virtual testing Structure-property relationships 


  1. 1.
    National Research Council, Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security (The National Academies Press, Washington, DC, 2008), p. 152Google Scholar
  2. 2.
    C. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics), 1st edn. (Springer-Verlag, New York, 2006), p. XX, 738Google Scholar
  3. 3.
    N.H. Paulson et al., Reduced-order structure-property linkages for polycrystalline microstructures based on 2-point statistics. Acta Mater. 129, 428–438 (2017)CrossRefGoogle Scholar
  4. 4.
    Z. Yang et al., Deep learning approaches for mining structure-property linkages in high contrast composites from simulation datasets. Comput. Mater. Sci. 151, 278–287 (2018)CrossRefGoogle Scholar
  5. 5.
    A. Gupta et al., Structure–property linkages using a data science approach: application to a non-metallic inclusion/steel composite system. Acta Mater. 91, 239–254 (2015)CrossRefGoogle Scholar
  6. 6.
    A. Çeçen et al., A data-driven approach to establishing microstructure–property relationships in porous transport layers of polymer electrolyte fuel cells. J. Power Sources 245, 144–153 (2014)CrossRefGoogle Scholar
  7. 7.
    A.J. Schwartz, M. Kumar, B.L. Adams, D.P. Field, Electron Backscatter Diffraction in Materials Science, 2nd edn. (Springer, US, 2009), p. XXII, 403CrossRefGoogle Scholar
  8. 8.
    A.P. Lyubartsev, A. Laaksonen, Calculation of effective interaction potentials from radial distribution functions: a reverse Monte Carlo approach. Phys. Rev. E 52(4), 3730 (1995)CrossRefGoogle Scholar
  9. 9.
    B.S. Fromm et al., Grain size and orientation distributions: application to yielding of α-titanium. Acta Mater. 57(8), 2339–2348 (2009)CrossRefGoogle Scholar
  10. 10.
    A. Cecen et al., 3-D microstructure analysis of fuel cell materials: spatial distributions of tortuosity, void size and diffusivity. J. Electrochem. Soc. 159(3), B299–B307 (2012)CrossRefGoogle Scholar
  11. 11.
    S.R. Kalidindi, S.R. Niezgoda, A.A. Salem, Microstructure informatics using higher-order statistics and efficient data-mining protocols. JOM 63(4), 34–41 (2011)CrossRefGoogle Scholar
  12. 12.
    S.R. Kalidindi, J.R. Houskamp, Application of the spectral methods of microstructure design to continuous fiber-reinforced composites. J. Compos. Mater. 41(8), 909–930 (2007)CrossRefGoogle Scholar
  13. 13.
    S. Torquato, H. Haslach, Random Heterogeneous Materials: Microstructure and Macroscopic Properties (American Society of Mechanical Engineers Digital Collection, 2002)Google Scholar
  14. 14.
    N. Hansen, Hall–Petch relation and boundary strengthening. Scr. Mater. 51(8), 801–806 (2004)CrossRefGoogle Scholar
  15. 15.
    A. Cord, F. Bach, D. Jeulin, Texture classification by statistical learning from morphological image processing: application to metallic surfaces. J. Microsc. 239(2), 159–166 (2010)Google Scholar
  16. 16.
    A.A. Wheeler, W.J. Boettinger, G.B. McFadden, Phase-field model for isothermal phase transitions in binary alloys. Phys. Rev. A 45(10), 7424 (1992)CrossRefGoogle Scholar
  17. 17.
    S. Wolfram, Statistical mechanics of cellular automata. Rev. Mod. Phys. 55(3), 601 (1983)CrossRefGoogle Scholar
  18. 18.
    J.A. Sethian, A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. 93(4), 1591–1595 (1996)CrossRefGoogle Scholar
  19. 19.
    D.K. Patel, H.F. Al-Harbi, S.R. Kalidindi, Extracting single-crystal elastic constants from polycrystalline samples using spherical nanoindentation and orientation measurements. Acta Mater. 79, 108–116 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Oda, S. Nemat-Nasser, M.M. Mehrabadi, A statistical study of fabric in a random assembly of spherical granules. Int. J. Numer. Anal. Methods Geomech. 6(1), 77–94 (1982)CrossRefGoogle Scholar
  21. 21.
    M.N. Rossol et al., Characterizing in-plane geometrical variability in textile ceramic composites. J. Am. Ceram. Soc. 98(1), 205–213 (2015)CrossRefGoogle Scholar
  22. 22.
    S. Sherman, J. Simmons, C. Przybyla, Mesoscale characterization of continuous fiber reinforced composites through machine learning: Fiber chirality. Acta Mater. 181, 447–459 (2019). CrossRefGoogle Scholar
  23. 23.
    H. Bale et al., Characterizing three-dimensional textile ceramic composites using synchrotron X-ray micro-computed-tomography. J. Am. Ceram. Soc. 95(1), 392–402 (2012)CrossRefGoogle Scholar
  24. 24.
    D.K. Patel, T. Parthasarathy, C. Przybyla, Predicting the effects of microstructure on matrix crack initiation in fiber reinforced ceramic matrix composites via machine learning. Compos. Struct. 236 (2020).
  25. 25.
    Y.C. Yabansu, D.K. Patel, S.R. Kalidindi, Calibrated localization relationships for elastic response of polycrystalline aggregates. Acta Mater. 81, 151–160 (2014)CrossRefGoogle Scholar
  26. 26.
    D.K. Patel, S.R. Kalidindi, Estimating the slip resistance from spherical nanoindentation and orientation measurements in polycrystalline samples of cubic metals. Int. J. Plast. 92, 19–30 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Dipen Patel
    • 1
  • Triplicane Parthasarathy
    • 1
  • Craig Przybyla
    • 2
    Email author
  1. 1.UES, IncDaytonUSA
  2. 2.Air Force Research Laboratory/RX, Wright-Patterson Air Force BaseDaytonUSA

Personalised recommendations