Advertisement

Challenges in Understanding the Dynamic Behavior of Heterogeneous Materials

  • Manny GonzalesEmail author
  • Naresh N. Thadhani
Chapter
  • 58 Downloads

Abstract

The response of heterogeneous materials subjected to extreme dynamic loads is complicated by meso-scale phenomena which manifests a bulk response to the percolating dynamic event. The microstructural arrangement of phases, the extrinsic properties of microconstituents, and the property contrasts and various length scales affect the ability of stress waves to propagate through a material and affect the material’s inherent dissipative behavior. Measuring the effects of these meso-level phenomena is very challenging when considering extremely fast events occurring at multiple spatial and temporal scales. The advent of high performance computing and massively parallel computations allows for highly resolved phenomena to be modeled via hydrocode simulation with relative ease. Combining microstructural and mechanistic understanding of the relevant physics of the dynamic processes can lead to a tractable solution to the problem of shock compression response in heterogeneous materials. This chapter discusses the challenges in understanding the dynamic behavior of heterogeneous materials in particular, which are of interest due to their fascinating and useful properties and in part because of the richness and diversity of phenomena activated under extreme dynamic conditions. A brief literature survey on the shock compression of heterogeneous materials is provided, with attention given to granular media, reactive powder mixtures, energetic and composite materials, and multiphase materials. Case studies from the authors’ work on reactive materials are presented which employ Integrated Computational Materials Science and Engineering (ICMSE) tools to understand the connection between observed experimental behavior and meso-level phenomena. A discussion is presented on possible ways of exploring topology, property contrasts, and microstructural morphology to link dynamic response to micro- and meso-scale behavior.

Keywords

Reactive materials Shock compression Heterogeneous Molecular dynamics Dissipative particle dynamics (DPD) Hydrocode Meso-scale Microstructure High strain rate Compaction Powders Titanium Boron Shock-induced reaction Energetic material Explosive Impact Flyer-plate 

References

  1. 1.
    E. Abu-Nada, Natural convection heat transfer simulation using energy conservative dissipative particle dynamics. Phys. Rev. E 81(5) (2010).  https://doi.org/10.1103/physreve.81.056704
  2. 2.
    E. Abu-Nada, Application of dissipative particle dynamics to natural convection in differentially heated enclosures. Mol. Simul. 37(2), 135–152 (2011). https://doi.org/10.1080/08927022.2010.533272 CrossRefGoogle Scholar
  3. 3.
    E. Antillon, K. Banlusan, A. Strachan, Coarse grain model for coupled thermo-mechano-chemical processes and its application to pressure-induced endothermic chemical reactions. Model. Simul. Mater. Sci. Eng. 22(2), 025027 (2014). https://doi.org/10.1088/0965-0393/22/2/025027
  4. 4.
    E. Antillon, A. Strachan, Mesoscale simulations of shockwave energy dissipation via chemical reactions. J. Chem. Phys. 142(8), 084108 (2015). https://doi.org/10.1063/1.4908309
  5. 5.
    R.A. Austin, D.L. McDowell, A dislocation-based constitutive model for viscoplastic deformation of FCC metals at very high strain rates. Int. J. Plast. 27(1), 1–24 (2011). https://doi.org/10.1016/j.ijplas.2010.03.002 CrossRefGoogle Scholar
  6. 6.
    R.A. Austin, D.L. McDowell, Parameterization of a rate-dependent model of shock-induced plasticity for copper, nickel, and aluminum. Int. J. Plast. 32–33, 134–154 (2012). https://doi.org/10.1016/j.ijplas.2011.11.002 CrossRefGoogle Scholar
  7. 7.
    R.A. Austin, D.L. McDowell, D.J. Benson, Numerical simulation of shock wave propagation in spatially-resolved particle systems. Model. Simul. Mater. Sci. Eng. 14(4), 537–561 (2006). https://doi.org/10.1088/0965-0393/14/4/001 CrossRefGoogle Scholar
  8. 8.
    R.A. Austin, D.L. McDowell, D.J. Benson, Mesoscale simulation of shock wave propagation in discrete Ni/Al powder mixtures. J. Appl. Phys. 111, 123511 (2012). https://doi.org/10.1063/1.4729304 CrossRefGoogle Scholar
  9. 9.
    J.B. Avalos, A.D. Mackie, Dissipative particle dynamics with energy conservation. Europhys. Lett. (EPL) 40(2), 141–146 (1997).  https://doi.org/10.1209/epl/i1997-00436-6
  10. 10.
    L.S. Bennett, Y. Horie, Shock-induced inorganic reactions and condensed phase detonations. Shock Waves 4, 127 (1994)CrossRefGoogle Scholar
  11. 11.
    L.S. Bennett, F.Y. Sorrell, I.K. Simonsen, Y. Horie, K. Iyer, Ultrafast chemical reactions between nickel and aluminum powders during shock loading. Appl. Phys. Lett. 61(5), 520–521 (1992)CrossRefGoogle Scholar
  12. 12.
    D. Benson, I. Do, M. Meyers, Computational modeling of the shock compression of powders, in Shock Compression of Condensed Matter – 2001, ed. by M. Furnish, N. Thadhani, Y. Horie (American Institute of Physics, Melville, 2002), pp. 1087–1092Google Scholar
  13. 13.
    D. Benson, V. Nesterenko, F. Jonsdottir, Micromechanics of shock deformation of granular materials, in Shock Compression of Condensed Matter 1995, ed. by S. Schmidt, W. Tao (American Institute of Physics, Woodbury/New York, 1996), pp. 603–606Google Scholar
  14. 14.
    J.K. Brennan, M. Lísal, J.D. Moore, S. Izvekov, I.V. Schweigert, J.P. Larentzos, Coarse-grain model simulations of nonequilibrium dynamics in heterogeneous materials. J. Phys. Chem. Lett. 5(12), 2144–2149 (2014). https://doi.org/10.1021/jz500756s CrossRefGoogle Scholar
  15. 15.
    H.J. Choi, R. Austin, J.K. Allen, D.L. McDowell, F. Mistree, D.J. Benson, An approach for robust design of reactive power metal mixtures based on non-deterministic micro-scale shock simulation. J. Comput.-Aided Mater. Des. 12(1), 57–85 (2005). https://doi.org/10.1007/s10820-005-1056-1 CrossRefGoogle Scholar
  16. 16.
    G.E. Duvall, R.A. Graham, Phase transitions under shock-wave loading. Rev. Mod. Phys. 49(3), 523 (1977)Google Scholar
  17. 17.
    D.E. Eakins, N.N. Thadhani, Shock compression of reactive powder mixtures. Int. Mater. Rev. 54(4), 181 (2009)Google Scholar
  18. 18.
    P. Español, Hydrodynamics from dissipative particle dynamics. Phys. Rev. E 52(2), 1734–1742 (1995).  https://doi.org/10.1103/physreve.52.1734 CrossRefGoogle Scholar
  19. 19.
    P. Español, Dissipative particle dynamics with energy conservation. Europhys. Lett. (EPL) 40(6), 631–636 (1997).  https://doi.org/10.1209/epl/i1997-00515-8
  20. 20.
    P. Español, P. Warren, Statistical mechanics of dissipative particle dynamics. Europhys. Lett. (EPL) 30(4), 191–196 (1995). https://doi.org/10.1209/0295-5075/30/4/001
  21. 21.
    J. Field, S. Walley, W. Proud, H. Goldrein, C. Siviour, Review of experimental techniques for high rate deformation and shock studies. Int. J. Impact Eng. 30(7), 725–775 (2004). https://doi.org/10.1016/j.ijimpeng.2004.03.005 CrossRefGoogle Scholar
  22. 22.
    J.W. Forbes, Shock Wave Compression of Condensed Matter – A Primer (Springer, 2012)CrossRefGoogle Scholar
  23. 23.
    U. Frisch, B. Hasslacher, Y. Pomeau, Lattice-gas automata for the navier-stokes equation. Phys. Rev. Lett. 56(14), 1505–1508 (1986).  https://doi.org/10.1103/physrevlett.56.1505 CrossRefGoogle Scholar
  24. 24.
    D.T. Fullwood, B.L. Adams, S.R. Kalidindi, A strong contrast homogenization formulation for multi-phase anisotropic materials. J. Mech. Phys. Solids 56(6), 2287–2297 (2008). https://doi.org/10.1016/j.jmps.2008.01.003 CrossRefGoogle Scholar
  25. 25.
    M. Gonzales, The mechanochemistry in heterogeneous reactive powder mixtures under high-strain-rate loading and shock compression. Ph.D. thesis (2015)Google Scholar
  26. 26.
    M. Gonzales, A. Gurumurthy, G.B. Kennedy, A.M. Gokhale, N.N. Thadhani, Microstructure-based simulations of the high-strain-rate response of heterogeneous Ti/Al/B reactive powder mixtures, in Proceedings of the Fall 2012 Meeting of the Materials Research Society (MRS, Boston, 2012)Google Scholar
  27. 27.
    M. Gonzales, A. Gurumurthy, G.B. Kennedy, A.M. Gokhale, N.N. Thadhani, Shock compression response of Ti+B reactive powder mixtures. J. Phys. Conf. Ser. 500, 052013 (2014)CrossRefGoogle Scholar
  28. 28.
    M. Gonzales, A. Gurumurthy, G.B. Kennedy, A.M. Gokhale, N.N. Thadhani, Heterogeneity and microstructural topology effects on the shock response of Ti+B+Al reactive powder mixtures. In preparation (2015)Google Scholar
  29. 29.
    M. Gonzales, A. Gurumurthy, G.B. Kennedy, A.M. Gokhale, N.N. Thadhani, Meso-scale heterogeneity effects on the bulk shock response of Ti+Al+B reactive powder mixtures, in AIP Conference Proceedings, vol. 1793 (2017), p. 080007Google Scholar
  30. 30.
    R.A. Graham, Sandia Laboratories Report SAND88-1055. Technical report, Sandia National Laboratory (1988)Google Scholar
  31. 31.
    R.A. Graham, Issues in shock-induced solid state chemistry, in 3rd International Symposium High Dynamic Pressures, Paris, ed. by R. Cheret, 1989, pp. 175–180Google Scholar
  32. 32.
    R.A. Graham, Solids Under High-Pressure Shock Compression (Springer, 1993)CrossRefGoogle Scholar
  33. 33.
    R.A. Graham, M.U. Anderson, Y. Horie, S.K. You, G.T. Holman, Pressure measurements in chemically reacting powder mixtures with the Bauer piezoelectric polymer gauge. Shock Waves 3, 79–82 (1993)CrossRefGoogle Scholar
  34. 34.
    R.D. Groot, P.B. Warren, Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107(11), 4423–4435 (1997). https://doi.org/10.1063/1.474784 CrossRefGoogle Scholar
  35. 35.
    A. Gurumurthy, Simulation Methodologies for Multiphase Three-Dimensional Microstructures. Ph.D. thesis, Georgia Institute of Technology (2014)Google Scholar
  36. 36.
    A. Gurumurthy, A.M. Gokhale, A. Godha, M. Gonzales, Montage serial sectioning: some finer aspects of practice. Metallogr. Microstruct. Anal. 2, 364–371 (2013)CrossRefGoogle Scholar
  37. 37.
    A. Gurumurthy, M. Gonzales, A.M. Gokhale, N.N. Thadhani, Bulk orientational anisotropy without spatial anisotropy due to powder compaction in Al-Ti-B compacts. Scr. Mater. 86, 28–31 (2014)CrossRefGoogle Scholar
  38. 38.
    J.M. Haile, Molecular Dynamics Simulation – Elementary Methods, professional paperback ed. edn. (John-Wiley, 1997)Google Scholar
  39. 39.
    P.J. Hoogerbrugge, J.M.V.A. Koelman, Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. (EPL) 19(3), 155–160 (1992). https://doi.org/10.1209/0295-5075/19/3/001
  40. 40.
    Y. Horie, R. Graham, I. Simonsen, Synthesis of nickel aluminides under high-pressure shock loading. Mater. Lett. 3(9–10), 354–359 (1985). https://doi.org/10.1016/0167-577X(85)90075-8. http://www.sciencedirect.com/science/article/pii/0167577X85900758
  41. 41.
    Y. Horie, R.A. Graham, I.K. Simonsen, in Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, ed. by L.E. Murr, K.P. Staudhammer, M.A. Meyers (Mercel Dekker, Inc., 1986), p. 1023Google Scholar
  42. 42.
    Y. Horie, A.B. Sawaoka, Shock Compression Chemistry of Materials (KTK, Tokyo, 1993)Google Scholar
  43. 43.
    H. Jarmakani, E. Bringa, P. Erhart, B. Remington, Y. Wang, N. Vo, M. Meyers, Molecular dynamics simulations of shock compression of nickel: from monocrystals to nanocrystals. Acta Mater. 56(19), 5584–5604 (2008). https://doi.org/10.1016/j.actamat.2008.07.052 CrossRefGoogle Scholar
  44. 44.
    Z. Kang, A.A. Banishev, G. Lee, D.A. Scripka, J. Breidenich, P. Xiao, J. Christensen, M. Zhou, C.J. Summers, D.D. Dlott, N.N. Thadhani, Exploration of CdTe quantum dots as mesoscale pressure sensors via time-resolved shock-compression photoluminescent emission spectroscopy. J. Appl. Phys. 120(4), 043107 (2016). https://doi.org/10.1063/1.4959257
  45. 45.
    M.I. Latypov, L.S. Toth, S.R. Kalidindi, Materials knowledge system for nonlinear composites. Comput. Methods Appl. Mech. Eng. 346, 180–196 (2019). https://doi.org/10.1016/j.cma.2018.11.034 CrossRefGoogle Scholar
  46. 46.
    R. Lebensohn, C. Tomé, A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metallurgica et Materialia 41(9), 2611–2624 (1993). https://doi.org/10.1016/0956-7151(93)90130-k CrossRefGoogle Scholar
  47. 47.
    R. Lebensohn, C. Tomé, A self-consistent viscoplastic model: prediction of rolling textures of anisotropic polycrystals. Mater. Sci. Eng. A 175(1–2), 71–82 (1994). https://doi.org/10.1016/0921-5093(94)91047-2 CrossRefGoogle Scholar
  48. 48.
    A.D. Mackie, J.B. Avalos, V. Navas, Dissipative particle dynamics with energy conservation: modelling of heat flow. Phys. Chem. Chem. Phys. 1(9), 2039–2049 (1999). https://doi.org/10.1039/a809502g CrossRefGoogle Scholar
  49. 49.
    J.B. Maillet, M. Mareschal, L. Soulard, R. Ravelo, P.S. Lomdahl, T.C. Germann, B.L. Holian, Uniaxial hugoniostat: a method for atomistic simulations of shocked materials. Phys. Rev. E 63(1) (2000).  https://doi.org/10.1103/physreve.63.016121
  50. 50.
    L.E. Malvern, Introduction to the Mechanics of a Continuous Medium (Prentice-Hall Inc., 1969)Google Scholar
  51. 51.
    T.I. Mattox, J.P. Larentzos, S.G. Moore, C.P. Stone, D.A. Ibanez, A.P. Thompson, M. Lísal, J.K. Brennan, S.J. Plimpton, Highly scalable discrete-particle simulations with novel coarse-graining: accessing the microscale. Mol. Phys. 116(15–16), 2061–2069 (2018). https://doi.org/10.1080/00268976.2018.1471532 CrossRefGoogle Scholar
  52. 52.
    A.E. Mattsson, P.A. Schultz, M.P. Desjarlais, T.R. Mattsson, K. Leung, Designing meaningful density functional theory calculations in materials science—a primer. Model. Simul. Mater. Sci. Eng. 13(1), R1–R31 (2004). https://doi.org/10.1088/0965-0393/13/1/r01 CrossRefGoogle Scholar
  53. 53.
    T. Mattsson, L. Shulenburger, S. Root, K. Cochrane, Density functional theory (DFT) simulations of co2 under shock compression and design of liquid co2 experiments on z (2011)Google Scholar
  54. 54.
    M.A. Meyers, Dynamic Behavior of Materials (John Wiley, 1994)CrossRefGoogle Scholar
  55. 55.
    M.A. Meyers, H. Jarmakani, E.M. Bringa, B.A. Remington, Dislocations in shock compression and release, in Dislocations in Solids, chap. 89, ed. by J.P. Hirth, L. Kubin (Elsevier B. V., 2009)Google Scholar
  56. 56.
    T. Mura, Micromechanics of Defects in Solids (Kluwer Academic Publishers, 1991)Google Scholar
  57. 57.
    L. Murr, Examination of microstructural development by shock waves in condensed matter: theoretical and practical consequences, in Shock Waves in Condensed Matter – 1987, ed. by S. Schmidt, N. Holmes (Elsevier, Amsterdam, 1988), pp. 315–320Google Scholar
  58. 58.
    L. Murr, M. Pradhan-Advani, C. Niou, L. Schoenlein, Correlating critical process parameters and microstructures in explosively fabricated ceramic/metal matrix superconductors, in Shock Compression of Condensed Matter – 1989, ed. by S. Schmidt, J. Johnson, L. Davison (Elsevier, Amsterdam, 1990), pp. 587–590Google Scholar
  59. 59.
    L.E. Murr, K.P. Staudhammer, Shock wave sensitization, shock-induced reactivity, and new materials fabrication, in Shock Waves for Industrial Applications, chap. 12, ed. by L.E. Murr (Noyes Publications, 1988), pp. 441–472Google Scholar
  60. 60.
    V. Nesterenko, Dynamics of Heterogeneous Materials (Springer, 2001)CrossRefGoogle Scholar
  61. 61.
    S.R. Niezgoda, Y.C. Yabansu, S.R. Kalidindi, Understanding and visualizing microstructure and microstructure variance as a stochastic process. Acta Mater. 59(16), 6387–6400 (2011). https://doi.org/10.1016/j.actamat.2011.06.051 CrossRefGoogle Scholar
  62. 62.
    K.T. Ramesh, High rates and impact experiments, in Springer Handbook of Experimental Solid Mechanics (Springer, 2008), pp. 929–960. https://doi.org/10.1007/978-0-387-30877-7_33
  63. 63.
    R. Ravelo, B. Holian, T. Germann, P. Lomdahl, Constant-stress hugoniostat method for following the dynamical evolution of shocked matter. Phys. Rev. B 70(1) (2004).  https://doi.org/10.1103/physrevb.70.014103
  64. 64.
    M. Rice, J. Walsh, Dynamic compression of liquids from measurements on strong shock waves. J. Chem. Phys. 26, 824 (1957)CrossRefGoogle Scholar
  65. 65.
    M. Ripoll, P. Español, M.H. Ernst, Dissipative particle dynamics with energy conservation: heat conduction. Int. J. Mod. Phys. C 09(08), 1329–1338 (1998). https://doi.org/10.1142/s0129183198001205 CrossRefGoogle Scholar
  66. 66.
    D.A. Scripka, G. Lee, Z. Kang, C.J. Summers, N.N. Thadhani, Time-resolved spectral response of asymmetrical optical microcavity structures under laser-driven shock compression. AIP Adv. 8(1), 015021 (2018). https://doi.org/10.1063/1.5000376
  67. 67.
    M.S. Sellers, M. Lísal, I. Schweigert, J.P. Larentzos, J.K. Brennan, Shock simulations of a single-site coarse-grain RDX model using the dissipative particle dynamics method with reactivity. Author(s) (2017). https://doi.org/10.1063/1.4971502
  68. 68.
    C.B. Skidmore, D.S. Phillips, P.M. Howe, J.T. Mang, J.A. Romero, The evolution of microstructural changes in pressed HMX explosives, in Proceedings of the Eleventh International Detonation symposium (1998)Google Scholar
  69. 69.
    P. Sood, S. Dwivedi, J. Brennan, N. Thadhani, Y. Horie, DPDE-based mesoscale simulations of shock response of HE composites. J. Phys. Conf. Ser. 500(17), 172002 (2014). https://doi.org/10.1088/1742-6596/500/17/172002
  70. 70.
    A.K. Stover, N.M. Krywopusk, J.D. Gibbins, T.P. Weihs, Mechanical fabrication of reactive metal laminate powders. J. Mater. Sci. 49(17), 5821–5830 (2014). https://doi.org/10.1007/s10853-014-8187-2 CrossRefGoogle Scholar
  71. 71.
    A. Strachan, B.L. Holian, Energy exchange between mesoparticles and their internal degrees of freedom. Phys. Rev. Lett. 94(1) (2005).  https://doi.org/10.1103/physrevlett.94.014301
  72. 72.
    N. Thadhani, Shock induced chemical synthesis of intermetallic compounds, in Shock Compression of Condensed Matter – 1989, ed. by S. Schmidt, J. Johnson, L. Davison (Elsevier, Amsterdam, 1990), pp. 503–510Google Scholar
  73. 73.
    N. Thadhani, E. Dunbar, R. Graham, Characteristics of shock-compressed configuration of Ti and Si powder mixtures, in High Pressure Science and Technology 1993, ed. by S. Schmidt, J. Shaner, G. Samara, M. Ross (American Institute of Physics, New York, 1994), pp. 1307–1310Google Scholar
  74. 74.
    N.N. Thadhani, Shock-induced chemical reactions and synthesis of materials. Prog. Mater. Sci. 37, 117–226 (1993)CrossRefGoogle Scholar
  75. 75.
    N.N. Thadhani, Shock-induced and shock-assisted solid-state chemical reactions in powder mixtures. J. Appl. Phys. 76(4), 2129–2138 (1994)CrossRefGoogle Scholar
  76. 76.
    N.N. Thadhani, A. Gokhale, J. Quenneville, Meso-scale experimental and numerical studies for predicting macro-scale performance of advanced reactive materials. DTRA Proposal BRBAA08-Per3-E-2-0040 (2010)Google Scholar
  77. 77.
    N.N. Thadhani, R.A. Graham, T. Royal, E. Dunbar, M.U. Anderson, G.T. Holman, J. Appl. Phys. 82(3), 1113 (1997)CrossRefGoogle Scholar
  78. 78.
    S. Torquato, Random heterogeneous media: microstructure and improved bounds on effective properties. Appl. Mech. Rev. 44(2), 37 (1991). https://doi.org/10.1115/1.3119494
  79. 79.
    S. Torquato, Random Heterogeneous Materials (Springer, New York, 2002). https://doi.org/10.1007/978-1-4757-6355-3 CrossRefGoogle Scholar
  80. 80.
    P.B. Warren, Dissipative particle dynamics. Curr. Opin. Colloid Interface Sci. 3(6), 620–624 (1998). https://doi.org/10.1016/s1359-0294(98)80089-7 CrossRefGoogle Scholar
  81. 81.
    C. Wei, B. Maddox, A. Stover, T. Weihs, V. Nesterenko, M. Meyers, Reaction in ni–al laminates by laser-shock compression and spalling. Acta Mater. 59(13), 5276–5287 (2011). https://doi.org/10.1016/j.actamat.2011.05.004 CrossRefGoogle Scholar
  82. 82.
    C. Wei, V. Nesterenko, T. Weihs, B. Remington, H.S. Park, M. Meyers, Response of Ni/Al laminates to laser-driven compression. Acta Mater. 60(9), 3929–3942 (2012). https://doi.org/10.1016/j.actamat.2012.03.028 CrossRefGoogle Scholar
  83. 83.
    N.S. Weingarten, W.D. Mattson, A.D. Yau, T.P. Weihs, B.M. Rice, A molecular dynamics study of the role of pressure on the response of reactive materials to thermal initiation. J. Appl. Phys. 107(9), 093517 (2010). https://doi.org/10.1063/1.3340965
  84. 84.
    Q. Wu, F. Jing, Thermodynamic equation of state and application to Hugoniot predictions for porous materials. J. Appl. Phys. 80, 4343 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Materials and Manufacturing DirectorateAir Force Research Laboratory, WPAFBDaytonUSA
  2. 2.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations