Immune System and Macrophage Activation in the Cochlea: Implication for Therapeutic Intervention

  • Bo hua HuEmail author
  • Celia Zhang


Cochlear inflammation occurs in almost all forms of cochlear disease conditions. This immune activation is mediated by both cellular and molecular components of the cochlear immune system. In the event of inflammatory activation, resident and infiltrating macrophages interact to unleash a cascade of inflammatory mediators. While the precise roles of immune responses in cochlear homeostasis and pathogenesis are not fully understood, anti-inflammatory therapeutics have shown to be beneficial in certain cochlear stress conditions. Recent studies are beginning to reveal the cellular and molecular mechanisms governing inflammatory activities, which in turn offer potential targets for intervention. In this review, we provide an updated overview of the immune anatomy of the cochlea with a focus on the cellular components of the cochlear immune system and macrophage diversity. We describe cochlear inflammatory activities in acute and chronic stress conditions and suggest that controlling the cochlear immune state could offer protection against not only ongoing pathogenesis but also future vulnerability in the event of additional stress. We highlight the potential functional roles of the immune system in cochlear homeostasis and disease, as well as the link between clinical symptoms and cochlear inflammation. Finally, we discuss immune modulations for therapeutic interventions.


Immunity Inflammation Cochlea Macrophage Immune cells 



This work was supported by the National Institute on Deafness and Other Communication Disorders of the National Institutes of Health [R01DC010154 (BHH)].


  1. 1.
    Verschuur C, Causon A, Green K, Bruce I, Agyemang-Prempeh A, Newman T (2015) The role of the immune system in hearing preservation after cochlear implantation. Cochlear Implants Int 16(Suppl 1):S40–SS2CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hirose K, Li SZ, Ohlemiller KK, Ransohoff RM (2014) Systemic lipopolysaccharide induces cochlear inflammation and exacerbates the synergistic ototoxicity of kanamycin and furosemide. J Assoc Res Otolaryngol 15(4):555–570CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Goodall AF, Siddiq MA (2015) Current understanding of the pathogenesis of autoimmune inner ear disease: a review. Clin Otolaryngol 40(5):412–419CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Iwai H, Lee S, Inaba M, Sugiura K, Baba S, Tomoda K et al (2003) Correlation between accelerated presbycusis and decreased immune functions. Exp Gerontol 38(3):319–325CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Toubi E, Ben-David J, Kessel A, Halas K, Sabo E, Luntz M (2004) Immune-mediated disorders associated with idiopathic sudden sensorineural hearing loss. Ann Otol Rhinol Laryngol 113(6):445–449CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hirose K, Discolo CM, Keasler JR, Ransohoff R (2005) Mononuclear phagocytes migrate into the murine cochlea after acoustic trauma. J Comp Neurol 489(2):180–194CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gazquez I, Soto-Varela A, Aran I, Santos S, Batuecas A, Trinidad G et al (2011) High prevalence of systemic autoimmune diseases in patients with Meniere’s disease. PLoS One 6(10):e26759CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Warchol ME, Schwendener RA, Hirose K (2012) Depletion of resident macrophages does not alter sensory regeneration in the avian cochlea. PLoS One 7(12):e51574CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zhang C, Sun W, Li J, Xiong B, Frye MD, Ding D et al (2017) Loss of sestrin 2 potentiates the early onset of age-related sensory cell degeneration in the cochlea. Neuroscience 361:179–191CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Psillas G, Pavlidis P, Karvelis I, Kekes G, Vital V, Constantinidis J (2008) Potential efficacy of early treatment of acute acoustic trauma with steroids and piracetam after gunshot noise. Eur Arch Otorhinolaryngol 265(12):1465–1469CrossRefGoogle Scholar
  11. 11.
    Zhou Y, Zheng G, Zheng H, Zhou R, Zhu X, Zhang Q (2013) Primary observation of early transtympanic steroid injection in patients with delayed treatment of noise-induced hearing loss. Audiol Neurootol 18(2):89–94CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Takahashi K, Kusakari J, Kimura S, Wada T, Hara A (1996) The effect of methylprednisolone on acoustic trauma. Acta Otolaryngol 116(2):209–212CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sautter NB, Shick EH, Ransohoff RM, Charo IF, Hirose K (2006) CC chemokine receptor 2 is protective against noise-induced hair cell death: studies in CX3CR1(+/GFP) mice. J Assoc Res Otolaryngol 7(4):361–372CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Canlon B, Meltser I, Johansson P, Tahera Y (2007) Glucocorticoid receptors modulate auditory sensitivity to acoustic trauma. Hear Res 226(1–2):61–69CrossRefGoogle Scholar
  15. 15.
    Fakhry N, Rostain JC, Cazals Y (2007) Hyperbaric oxygenation with corticoid in experimental acoustic trauma. Hear Res 230(1–2):88–92CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hoshino T, Tabuchi K, Hirose Y, Uemaetomari I, Murashita H, Tobita T et al (2008) The non-steroidal anti-inflammatory drugs protect mouse cochlea against acoustic injury. Tohoku J Exp Med 216(1):53–59CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wakabayashi K, Fujioka M, Kanzaki S, Okano HJ, Shibata S, Yamashita D et al (2010) Blockade of interleukin-6 signaling suppressed cochlear inflammatory response and improved hearing impairment in noise-damaged mice cochlea. Neurosci Res 66(4):345–352CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Takemura K, Komeda M, Yagi M, Himeno C, Izumikawa M, Doi T et al (2004) Direct inner ear infusion of dexamethasone attenuates noise-induced trauma in guinea pig. Hear Res 196(1–2):58–68CrossRefGoogle Scholar
  19. 19.
    Yang SZ, Cai QF, Vethanayagam RR, Wang JM, Yang WP, Hu BH (2016) Immune defense is the primary function associated with the differentially expressed genes in the cochlea following acoustic trauma. Hear Res 333:283–294CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Cai Q, Vethanayagam RR, Yang S, Bard J, Jamison J, Cartwright D et al (2014) Molecular profile of cochlear immunity in the resident cells of the organ of Corti. J Neuroinflammation 11(1):173CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Patel M, Hu Z, Bard J, Jamison J, Cai Q, Hu BH (2013) Transcriptome characterization by RNA-Seq reveals the involvement of the complement components in noise-traumatized rat cochleae. Neuroscience 248C:1–16CrossRefGoogle Scholar
  22. 22.
    Cho Y, Gong TW, Kanicki A, Altschuler RA, Lomax MI (2004) Noise overstimulation induces immediate early genes in the rat cochlea. Brain Res Mol Brain Res 130(1–2):134–148CrossRefGoogle Scholar
  23. 23.
    Satoh H, Firestein GS, Billings PB, Harris JP, Keithley EM (2002) Tumor necrosis factor-alpha, an initiator, and etanercept, an inhibitor of cochlear inflammation. Laryngoscope 112(9):1627–1634CrossRefGoogle Scholar
  24. 24.
    Miyao M, Firestein GS, Keithley EM (2008) Acoustic trauma augments the cochlear immune response to antigen. Laryngoscope 118(10):1801–1808CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Han Y, Hong L, Zhong C, Chen Y, Wang Y, Mao X et al (2012) Identification of new altered genes in rat cochleae with noise-induced hearing loss. Gene 499(2):318–322CrossRefGoogle Scholar
  26. 26.
    Tornabene SV, Sato K, Pham L, Billings P, Keithley EM (2006) Immune cell recruitment following acoustic trauma. Hear Res 222(1–2):115–124CrossRefGoogle Scholar
  27. 27.
    Tan WJ, Thorne PR, Vlajkovic SM (2016) Characterisation of cochlear inflammation in mice following acute and chronic noise exposure. Histochem Cell Biol 146(2):219–230CrossRefGoogle Scholar
  28. 28.
    Sarlus H, Fontana JM, Tserga E, Meltser I, Cederroth CR, Canlon B (2019) Circadian integration of inflammation and glucocorticoid actions: implications for the cochlea. Hear Res 377:53–60CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Matern M, Vijayakumar S, Margulies Z, Milon B, Song Y, Elkon R et al (2017) Gfi1Cre mice have early onset progressive hearing loss and induce recombination in numerous inner ear non-hair cells. Sci Rep 7:42079CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Okano T, Nakagawa T, Kita T, Kada S, Yoshimoto M, Nakahata T et al (2008) Bone marrow-derived cells expressing Iba1 are constitutively present as resident tissue macrophages in the mouse cochlea. J Neurosci Res 86(8):1758–1767CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Fujioka M, Kanzaki S, Okano HJ, Masuda M, Ogawa K, Okano H (2006) Proinflammatory cytokines expression in noise-induced damaged cochlea. J Neurosci Res 83(4):575–583CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Takahashi M, Harris JP (1988) Anatomic distribution and localization of immunocompetent cells in normal mouse endolymphatic sac. Acta Otolaryngol 106(5–6):409–416CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yang W, Vethanayagam RR, Dong Y, Cai Q, Hu BH (2015) Activation of the antigen presentation function of mononuclear phagocyte populations associated with the basilar membrane of the cochlea after acoustic overstimulation. Neuroscience 303:1–15CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Dong Y, Zhang C, Frye M, Yang W, Ding D, Sharma A et al (2018) Differential fates of tissue macrophages in the cochlea during postnatal development. Hear Res 365:110–126CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Shi X (2010) Resident macrophages in the cochlear blood-labyrinth barrier and their renewal via migration of bone-marrow-derived cells. Cell Tissue Res 342(1):21–30CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hirose K, Li SZ (2019) The role of monocytes and macrophages in the dynamic permeability of the blood-perilymph barrier. Hear Res 374:49–57CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Prinz M, Priller J (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15(5):300–312CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Haldar M, Murphy KM (2014) Origin, development, and homeostasis of tissue-resident macrophages. Immunol Rev 262(1):25–35CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kim JH, Rodriguez-Vazquez JF, Verdugo-Lopez S, Cho KH, Murakami G, Cho BH (2011) Early fetal development of the human cochlea. Anat Rec (Hoboken) 294(6):996–1002CrossRefGoogle Scholar
  40. 40.
    Hirose K, Rutherford MA, Warchol ME (2017) Two cell populations participate in clearance of damaged hair cells from the sensory epithelia of the inner ear. Hear Res 352:70–81CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Geissmann F, Gordon S, Hume DA, Mowat AM, Randolph GJ (2010) Unravelling mononuclear phagocyte heterogeneity. Nat Rev Immunol 10(6):453–460CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5(12):953–964CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Fredelius L, Rask-Andersen H (1990) The role of macrophages in the disposal of degeneration products within the organ of Corti after acoustic overstimulation. Acta Otolaryngol 109(1–2):76–82CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Frye MD, Yang W, Zhang C, Xiong B, Hu BH (2017) Dynamic activation of basilar membrane macrophages in response to chronic sensory cell degeneration in aging mouse cochleae. Hear Res 344:125–134CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Morizono T, Giebink GS, Paparella MM, Sikora MA, Shea D (1985) Sensorineural hearing loss in experimental purulent otitis media due to Streptococcus pneumoniae. Arch Otolaryngol 111(12):794–798CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ghaheri BA, Kempton JB, Pillers DAM, Trune DR (2007) Cochlear cytokine gene expression in murine acute otitis media. Laryngoscope 117(1):22–29CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ichimiya I, Suzuki M, Hirano T, Mogi G (1999) The influence of pneumococcal otitis media on the cochlear lateral wall. Hear Res 131(1–2):128–134CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kesser BW, Hashisaki GT, Spindel JH, Ruth RA, Scheld WM (1999) Time course of hearing loss in an animal model of pneumococcal meningitis. Otolaryngol Head Neck Surg 120(5):628–637CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Klein M, Koedel U, Pfister HW, Kastenbauer S (2003) Morphological correlates of acute and permanent hearing loss during experimental pneumococcal meningitis. Brain Pathol 13(2):123–132CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Woolf NK, Harris JP (1986) Cochlear pathophysiology associated with inner ear immune responses. Acta Otolaryngol 102(5–6):353–364CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Ma C, Billings P, Harris JP, Keithley EM (2000) Characterization of an experimentally induced inner ear immune response. Laryngoscope 110(3 Pt 1):451–456CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Takahashi M, Harris JP (1988) Analysis of immunocompetent cells following inner ear immunostimulation. Laryngoscope 98(10):1133–1138CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    So H, Kim H, Lee JH, Park C, Kim Y, Kim E et al (2007) Cisplatin cytotoxicity of auditory cells requires secretions of proinflammatory cytokines via activation of ERK and NF-kappaB. J Assoc Res Otolaryngol 8(3):338–355CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Adams JC, Seed B, Lu N, Landry A, Xavier RJ (2009) Selective activation of nuclear factor kappa B in the cochlea by sensory and inflammatory stress. Neuroscience 160(2):530–539CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Vabulas RM, Ahmad-Nejad P, da Costa C, Miethke T, Kirschning CJ, Hacker H et al (2001) Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 276(33):31332–31339CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T et al (2002) Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med 195(1):99–111CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Ohashi K, Burkart V, Flohe S, Kolb H (2000) Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 164(2):558–561CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Miyake K (2007) Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin Immunol 19(1):3–10CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Zhang G, Ghosh S (2001) Toll-like receptor-mediated NF-kappaB activation: a phylogenetically conserved paradigm in innate immunity. J Clin Invest 107(1):13–19CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kawai T, Akira S (2007) Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med 13(11):460–469CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Martin L, Pingle SC, Hallam DM, Rybak LP, Ramkumar V (2006) Activation of the adenosine A3 receptor in RAW 264.7 cells inhibits lipopolysaccharide-stimulated tumor necrosis factor-alpha release by reducing calcium-dependent activation of nuclear factor-kappaB and extracellular signal-regulated kinase 1/2. J Pharmacol Exp Therap 316(1):71–78CrossRefGoogle Scholar
  62. 62.
    Vethanayagam RR, Yang W, Dong Y, Hu BH (2016) Toll-like receptor 4 modulates the cochlear immune response to acoustic injury. Cell Death Dis 7(6):e2245CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Oh GS, Kim HJ, Choi JH, Shen A, Kim CH, Kim SJ et al (2011) Activation of lipopolysaccharide-TLR4 signaling accelerates the ototoxic potential of cisplatin in mice. J Immunol 186(2):1140–1150CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Xu Y, Chen S, Cao Y, Zhou P, Chen Z, Cheng K (2018) Discovery of novel small molecule TLR4 inhibitors as potent anti-inflammatory agents. Eur J Med Chem 154:253–266CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Keithley EM, Wang X, Barkdull GC (2008) Tumor necrosis factor alpha can induce recruitment of inflammatory cells to the cochlea. Otol Neurotol 29(6):854–859CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Wang X, Truong T, Billings PB, Harris JP, Keithley EM (2003) Blockage of immune-mediated inner ear damage by etanercept. Otol Neurotol 24(1):52–57CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Nakamoto T, Mikuriya T, Sugahara K, Hirose Y, Hashimoto T, Shimogori H et al (2012) Geranylgeranylacetone suppresses noise-induced expression of proinflammatory cytokines in the cochlea. Auris Nasus Larynx 39(3):270–274CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Lu B, Rutledge BJ, Gu L, Fiorillo J, Lukacs NW, Kunkel SL et al (1998) Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J Exp Med 187(4):601–608CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Frye MD, Zhang C, Hu BH (2018) Lower level noise exposure that produces only TTS modulates the immune homeostasis of cochlear macrophages. J Neuroimmunol 323:152–166CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Fredelius L, Rask-Andersen H, Johansson B, Urquiza R, Bagger-Sjoback D, Wersall J (1988) Time sequence of degeneration pattern of the organ of Corti after acoustic overstimulation. A light microscopical and electrophysiological investigation in the guinea pig. Acta Otolaryngol 106(1–2):81–93CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19(1):71–82CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN et al (2010) Nomenclature of monocytes and dendritic cells in blood. Blood 116(16):e74–e80CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S et al (2007) Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317(5838):666–670CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Carlin LM, Stamatiades EG, Auffray C, Hanna RN, Glover L, Vizcay-Barrena G et al (2013) Nr4a1-dependent Ly6Clow monocytes monitor endothelial cells and orchestrate their disposal. Cell 153(2):362–375CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Gilroy DW, Colville-Nash PR, McMaster S, Sawatzky DA, Willoughby DA, Lawrence T (2003) Inducible cyclooxygenase-derived 15-deoxy(Delta)12-14PGJ2 brings about acute inflammatory resolution in rat pleurisy by inducing neutrophil and macrophage apoptosis. FASEB J 17(15):2269–2271CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Janssen WJ, Barthel L, Muldrow A, Oberley-Deegan RE, Kearns MT, Jakubzick C et al (2011) Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury. Am J Respir Crit Care Med 184(5):547–560CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Hughes J, Johnson RJ, Mooney A, Hugo C, Gordon K, Savill J (1997) Neutrophil fate in experimental glomerular capillary injury in the rat. Emigration exceeds in situ clearance by apoptosis. Am J Pathol 150(1):223–234PubMedPubMedCentralGoogle Scholar
  78. 78.
    Bellingan GJ, Caldwell H, Howie S, Dransfield I, Haslett C (1996) In vivo fate of the inflammatory macrophage during the resolution of inflammation: inflammatory macrophages do not die locally, but emigrate to the draining lymph nodes. J Immunol 157(6):2577–2585PubMedPubMedCentralGoogle Scholar
  79. 79.
    Yimtae K, Song H, Billings P, Harris JP, Keithley EM (2001) Connection between the inner ear and the lymphatic system. Laryngoscope 111(9):1631–1635CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523(7560):337CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    McWhorter FY, Wang T, Nguyen P, Chung T, Liu WF (2013) Modulation of macrophage phenotype by cell shape. Proc Natl Acad Sci U S A 110(43):17253–17258CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Davis GS, Brody AR, Adler KB (1979) Functional and physiologic correlates of human alveolar macrophage cell shape and surface morphology. Chest 75(2 Suppl):280–282CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Streit WJ, Graeber MB, Kreutzberg GW (1988) Functional plasticity of microglia: a review. Glia 1(5):301–307CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Calton MA, Lee D, Sundaresan S, Mendus D, Leu R, Wangsawihardja F et al (2014) A lack of immune system genes causes loss in high frequency hearing but does not disrupt cochlear synapse maturation in mice. PLoS One 9(5):e94549CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Fredelius L (1988) Time sequence of degeneration pattern of the organ of Corti after acoustic overstimulation. A transmission electron microscopy study. Acta Otolaryngol 106(5–6):373–385CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Kaur T, Zamani D, Tong L, Rubel EW, Ohlemiller KK, Hirose K et al (2015) Fractalkine signaling regulates macrophage recruitment into the cochlea and promotes the survival of spiral ganglion neurons after selective hair cell lesion. J Neurosci. 35(45):15050–15061CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Abrashkin KA, Izumikawa M, Miyazawa T, Wang CH, Crumling MA, Swiderski DL et al (2006) The fate of outer hair cells after acoustic or ototoxic insults. Hear Res 218(1–2):20–29CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Sato E, Shick HE, Ransohoff RM, Hirose K (2008) Repopulation of cochlear macrophages in murine hematopoietic progenitor cell chimeras: the role of CX3CR1. J Comp Neurol 506(6):930–942CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Lang H, Ebihara Y, Schmiedt RA, Minamiguchi H, Zhou D, Smythe N et al (2006) Contribution of bone marrow hematopoietic stem cells to adult mouse inner ear: mesenchymal cells and fibrocytes. J Comp Neurol 496(2):187–201CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Bas E, Goncalves S, Adams M, Dinh CT, Bas JM, Van De Water TR et al (2015) Spiral ganglion cells and macrophages initiate neuro-inflammation and scarring following cochlear implantation. Front Cell Neurosci 9:303CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Ruitenberg MJ, Vukovic J, Blomster L, Hall JM, Jung S, Filgueira L et al (2008) CX3CL1/fractalkine regulates branching and migration of monocyte-derived cells in the mouse olfactory epithelium. J Neuroimmunol 205(1–2):80–85CrossRefGoogle Scholar
  92. 92.
    Jacquelin S, Licata F, Dorgham K, Hermand P, Poupel L, Guyon E et al (2013) CX3CR1 reduces Ly6Chigh-monocyte motility within and release from the bone marrow after chemotherapy in mice. Blood 122(5):674–683CrossRefGoogle Scholar
  93. 93.
    Zhang J-M, An J (2007) Cytokines, inflammation and pain. Int Anesthesiol Clin 45(2):27CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Zhang J-M, Li H, Liu B, Brull SJ (2002) Acute topical application of tumor necrosis factor α evokes protein kinase A-dependent responses in rat sensory neurons. J Neurophysiol 88(3):1387–1392CrossRefGoogle Scholar
  95. 95.
    Özaktay AC, Kallakuri S, Takebayashi T, Cavanaugh JM, Asik I, DeLeo JA et al (2006) Effects of interleukin-1 beta, interleukin-6, and tumor necrosis factor on sensitivity of dorsal root ganglion and peripheral receptive fields in rats. Eur Spine J 15(10):1529–1537CrossRefGoogle Scholar
  96. 96.
    Liu C, Glowatzki E, Fuchs PA (2015) Unmyelinated type II afferent neurons report cochlear damage. Proc Natl Acad Sci 112(47):14723–14727CrossRefGoogle Scholar
  97. 97.
    Perry VH, Holmes C (2014) Microglial priming in neurodegenerative disease. Nat Rev Neurol 10(4):217–224CrossRefGoogle Scholar
  98. 98.
    Hashimoto S, Billings P, Harris JP, Firestein GS, Keithley EM (2005) Innate immunity contributes to cochlear adaptive immune responses. Audiol Neurootol 10(1):35–43CrossRefGoogle Scholar
  99. 99.
    Harris KC, Bielefeld E, Hu BH, Henderson D (2006) Increased resistance to free radical damage induced by low-level sound conditioning. Hear Res 213(1–2):118–129CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Campo P, Subramaniam M, Henderson D (1991) The effect of ‘conditioning’ exposures on hearing loss from traumatic exposure. Hear Res 55(2):195–200CrossRefGoogle Scholar
  101. 101.
    Subramaniam M, Henderson D, Campo P, Spongr V (1992) The effect of ‘conditioning’ on hearing loss from a high frequency traumatic exposure. Hear Res 58(1):57–62CrossRefGoogle Scholar
  102. 102.
    Subramaniam M, Henderson D, Spongr V (1993) Effect of low-frequency “conditioning” on hearing loss from high-frequency exposure. J Acoust Soc Am 93(2):952–956CrossRefGoogle Scholar
  103. 103.
    Subramaniam M, Henderson D, Spongr VP (1993) Protection from noise induced hearing loss: is prolonged ‘conditioning’ necessary? Hear Res 65(1–2):234–239CrossRefGoogle Scholar
  104. 104.
    Henselman LW, Henderson D, Subramaniam M, Sallustio V (1994) The effect of ‘conditioning’ exposures on hearing loss from impulse noise. Hear Res 78(1):1–10CrossRefGoogle Scholar
  105. 105.
    Hu BH, Henderson D (1997) Changes in F-actin labeling in the outer hair cell and the Deiters cell in the chinchilla cochlea following noise exposure. Hear Res 110(1–2):209–218CrossRefGoogle Scholar
  106. 106.
    Roy S, Ryals MM, Van den Bruele AB, Fitzgerald TS, Cunningham LL (2013) Sound preconditioning therapy inhibits ototoxic hearing loss in mice. J Clin Invest 123(11):4945–4949CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Perez R, Freeman S, Sohmer H (2004) Effect of an initial noise induced hearing loss on subsequent noise induced hearing loss. Hear Res 192(1–2):101–106CrossRefGoogle Scholar
  108. 108.
    Zhang C, Frye MD, Sun W, Hu BH (2018) Preconditioning noise alters immune reaction to subsequent acoustic overstimulation in the cochlea. In: 41st Annual midwinter meeting, San Diego, CAGoogle Scholar
  109. 109.
    Rarey KE, Curtis LM, Wouter J-F (1993) Tissue specific levels of glucocorticoid receptor within the rat inner ear. Hear Res 64(2):205–210CrossRefGoogle Scholar
  110. 110.
    ten Cate WJ, Curtis LM, Rarey KE (1992) Immunochemical detection of glucocorticoid receptors within rat cochlear and vestibular tissues. Hear Res 60(2):199–204CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Takumi Y, Nishio S-Y, Mugridge K, Oguchi T, Hashimoto S, Suzuki N et al (2014) Gene expression pattern after insertion of dexamethasone-eluting electrode into the guinea pig cochlea. PLoS One 9(10):e110238CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Lyu AR, Kim DH, Lee SH, Shin DS, Shin SA, Park YH (2018) Effects of dexamethasone on intracochlear inflammation and residual hearing after cochleostomy: a comparison of administration routes. PLoS One 13(3):e0195230CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Chandrasekhar SS, Rubinstein RY, Kwartler JA, Gatz M, Connelly PE, Huang E et al (2000) Dexamethasone pharmacokinetics in the inner ear: comparison of route of administration and use of facilitating agents. Otolaryngol Head Neck Surg 122(4):521–528PubMedPubMedCentralGoogle Scholar
  114. 114.
    Nanda S, Bathon JM (2004) Etanercept: a clinical review of current and emerging indications. Expert Opin Pharmacother 5(5):1175–1186CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Rahman MU, Poe DS, Choi HK (2001) Etanercept therapy for immune-mediated cochleovestibular disorders: preliminary results in a pilot study. Otol Neurotol 22(5):619–624CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Street I, Jobanputra P, Proops D (2006) Etanercept, a tumour necrosis factor α receptor antagonist, and methotrexate in acute sensorineural hearing loss. J Laryngol Otol 120(12):1064–1066CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Matteson EL, Choi HK, Poe DS, Wise C, Lowe VJ, McDonald TJ et al (2005) Etanercept therapy for immune-mediated cochleovestibular disorders: a multi-center, open-label, pilot study. Arthritis Care Res 53(3):337–342CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Center for Hearing and Deafness, University at BuffaloBuffaloUSA

Personalised recommendations