Advertisement

Optimization

  • Hazim Nasir Ghafil
  • Károly Jármai
Chapter
  • 83 Downloads

Abstract

Optimization algorithms provide us with solutions for problems that can not be solved or hard to be solved by traditional methods.

References

  1. Brooks SH (1958) A discussion of random methods for seeking maxima. Oper Res 6(2):244–251CrossRefGoogle Scholar
  2. Brownlee J (2011) Clever algorithms: nature-inspired programming recipes. Available online: https://doc.lagout.org/science/0_Computer%20Science/2_Algorithms/Clever%20Algorithms_%20Nature-Inspired%20Programming%20Recipes%20%5BBrownlee%202012-06-15%5D.pdf. Accessed 18 Dec 2019
  3. Carbas S (2016) Design optimization of steel frames using an enhanced firefly algorithm. Eng Optim 48(12):2007–2025CrossRefGoogle Scholar
  4. Colorni A, Dorigo M, Maniezzo V (1991) Distributed optimization by ant colonies. In: Proceedings of the first European conference on artificial life. Paris, France, pp 134–142Google Scholar
  5. Colorni A, Dorigo M, Maniezzo V (1992) An investigation of some properties of an “ant algorithm”. In: PPSN, pp 509–520Google Scholar
  6. Computing GTCO (2011) The waggle dance of the honeybee. Youtube. https://www.youtube.com/watch?v=IkO1uJeOlvM. Accessed 4 Aug 2018
  7. Corana A, Marchesi M, Martini C, Ridella S (1987) Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithm Corrigenda for this article is available here. ACM Trans Mathem Softw (TOMS) 13(3):262–280CrossRefGoogle Scholar
  8. Dorigo M (1992) Optimization, learning and natural algorithms. PhD Thesis, Politecnico di MilanoGoogle Scholar
  9. Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the travelling salesman problem. IEEE Trans Evol Comput 1(1):53–66CrossRefGoogle Scholar
  10. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Micro machine and human science. In: Proceedings of the sixth international symposium on MHS’95. IEEE, pp 39–43Google Scholar
  11. Eglese R (1990) Simulated annealing: a tool for operational research. Eur J Oper Res 46(3):271–281MathSciNetCrossRefGoogle Scholar
  12. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68CrossRefGoogle Scholar
  13. Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3(2):95–99CrossRefGoogle Scholar
  14. Goldstein L, Waterman M (1988) Neighbourhood size in the simulated annealing algorithm. Am J Mathem Manag Sci 8(3–4):409–423zbMATHGoogle Scholar
  15. Hasançebi O, Çarbaş S, Saka MP (2010) Improving the performance of simulated annealing in structural optimization. Struct Multidiscip Optim 41(2):189–203CrossRefGoogle Scholar
  16. Heris SMK (2018) ACO for continuous domains in MATLAB. Yarpiz. http://yarpiz.com/67/ypea104-acor. Accessed 11 Aug 2018
  17. Hillier MS, Hillier FS (2003) Conventional optimization techniques. In: Evolutionary optimization. Springer, pp 3–25Google Scholar
  18. Karaboga D (2010) Artificial bee colony algorithm. Scholarpedia 5:6915CrossRefGoogle Scholar
  19. Kennedy J (2011) Particle swarm optimization. In: Encyclopedia of machine learning. Springer, pp 760–766Google Scholar
  20. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks IV, pp 1942–1948Google Scholar
  21. Kirkpatrick S (1984) Optimization by simulated annealing: quantitative studies. J Stat Phys 34(5–6):975–986MathSciNetCrossRefGoogle Scholar
  22. Kong M, Tian P (2006) A new ant colony optimization applied for the multidimensional knapsack problem. In: Asia-Pacific conference on simulated evolution and learning. Springer, pp 142–149Google Scholar
  23. Liu Y, Passino K (2002) Biomimicry of social foraging bacteria for distributed optimization: models, principles, and emergent behaviors. J Optim Theory Appl 115(3):603–628MathSciNetCrossRefGoogle Scholar
  24. Mehrabian AR, Lucas C (2006) A novel numerical optimization algorithm inspired from weed colonization. Ecol Inform 1(4):355–366CrossRefGoogle Scholar
  25. Mortazavi A, Toğan V (2016) Simultaneous size, shape, and topology optimization of truss structures using integrated particle swarm optimizer. Struct Multidiscip Optim 54(4):715–736MathSciNetCrossRefGoogle Scholar
  26. Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Caltech concurrent computation program, C3P Report 826Google Scholar
  27. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313MathSciNetCrossRefGoogle Scholar
  28. Pham DT, Ghanbarzadeh A, Koç E, Otri S, Rahim S, Zaidi M (2006) The bees algorithm—a novel tool for complex optimisation problems. In: Intelligent production machines and systems. Elsevier, pp 454–459Google Scholar
  29. Reynolds RG (1994) An introduction to cultural algorithms. In: Proceedings of the third annual conference on evolutionary programming. World Scientific, pp 131–139Google Scholar
  30. Rosenbrock H (1960) An automatic method for finding the greatest or least value of a function. Comput J 3(3):175–184MathSciNetCrossRefGoogle Scholar
  31. Rubinstein RY (1997) Optimization of computer simulation models with rare events. Eur J Oper Res 99(1):89–112CrossRefGoogle Scholar
  32. Socha K, Dorigo M (2008) Ant colony optimization for continuous domains. Eur J Oper Res 185(3):1155–1173MathSciNetCrossRefGoogle Scholar
  33. Srikanth GU, Geetha R (2018) Task scheduling using ant colony optimization in multicore architectures: a survey. Soft Comput 22(15):5179–5196CrossRefGoogle Scholar
  34. Storn R, Price K (1995) Differential evolution-A simple and efficient adaptive scheme for global optimization over continuous spaces. Technical report, International Computer Science Institute 11 (1995)Google Scholar
  35. Tsutsui S (2007) Cunning ant system for quadratic assignment problem with local search and parallelization. In: International conference on pattern recognition and machine intelligence. Springer, pp 269–278Google Scholar
  36. Whitley LD, Starkweather T, Fuquay DA (1989) Scheduling problems and traveling salesmen: The genetic edge recombination operator. In: ICGA, pp 133–140Google Scholar
  37. Yang XS (2009) Firefly algorithms for multimodal optimization. In: International symposium on stochastic algorithms. Springer, pp 169–178Google Scholar
  38. Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: González JR, Pelta DA, Cruz C, Terrazas G, Krasnogor N (eds) Nature inspired cooperative strategies for optimization (NICSO 2010): studies in computational intelligence, vol 284. Springer, Berlin, Heidelberg, pp 65–74Google Scholar
  39. Yang XS (2012) Flower pollination algorithm for global optimization. In: Durand-Lose J, Jonoska N (eds) Unconventional computation and natural computation. UCNC 2012. Lecture Notes in Computer Science, vol 7445. Springer, Berlin, Heidelberg, pp 240–249Google Scholar
  40. Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: Nature and biologically inspired computing. World congress on NaBIC 2009. IEEE, pp 210–214Google Scholar
  41. Zhao SZ, Liang JJ, Suganthan PN, Tasgetiren MF (2008) Dynamic multi-swarm particle swarm optimizer with local search for large scale global optimization. In: IEEE congress on evolutionary computation. CEC 2008 (IEEE World Congress on Computational Intelligence). IEEE, pp 3845–3852Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hazim Nasir Ghafil
    • 1
    • 2
  • Károly Jármai
    • 1
  1. 1.Faculty of Mechanical Engineering and InformaticsUniversity of MiskolcMiskolcHungary
  2. 2.University of KufaNajafIraq

Personalised recommendations